我們首先將複數 (complex number) 視為由實數組成的有序對,其乘以任意實數的作法,與在歐氏平面 R2 相同,亦即
定義1.2-1. 設 z 為複數 (z∈C),即存在有 x,y∈R 使得 z=(x,y) ,且對任意 α∈R ,則有
αz=α(x,y)=(αx,αy).
和我們在高中使用的符號 z=x+iy 比對一下,則有 1=(1,0)、i=(0,1) 以及 原點 z=0 表為 0=(0,0)。
GeoGebra 1: 複數乘以實數倍圖示
複數的四則運算定義如下:
定義1.2-2. 設 z1=(x1,y1),z2=(x2,y2)∈C ,則在複數上的四則代數運算定義如下:
‘‘=" (x1,y1)=(x2,y2)⟺x1=x2,y1=y2,
‘‘+" z1+z2=(x1,y1)+(x2,y2)=(x1+x2,y1+y2),
‘‘−" z1−z2=(x1,y1)−(x2,y2)=(x1−x2,y1−y2)
z1+(−z2)=(x1,y1)+(−x2,−y2),
‘‘×" z1×z2=(x1,y1)×(x2,y2)=(x1x2−y1y2,x1y2+y1x2),
‘‘÷" z1÷z2=z2z1=(x2,y2)(x1,y1)=(x22+y22x1x2+y1y2,x22+y22x1y2−y1x2) 其中 z2=(x2,y2)=0.
Geogebra 2: 複數的四則運算圖示
從定義1.2-2可知下式成立:
z1=(x2+y2x,x2+y2−y).(1.2-1) 透過定義1.2-1與1.2-2,可以將複數集合視為
C={(x,y)∈R2(x1,y1)+(x2,y2)=(x1+x2,y1+y2)(x1,y1)⋅(x2,y2)=(x1x2−y1y2,x1y2+y1x2)} 以下將說明此複數是體 (field)。
定理1.2-1. (C,+,⋅) 是一個體,設z1,z2,z3,z∈C,則
(P1) z1+z2=z2+z1 加法交換率 (additive commutativity)
(P2) (z1+z2)+z3=z1+(z2+z3) 加法結合率 (additive associativity)
(P3) z+(0,0)=z+0=z 加法單位元素 (additive identity)
(P4) z+(−z)=0 加法反元素 (additive inverse)
(P5) z1z2=z2z1 乘法交換率 (multiplicative commutativity)
(P6) (z1z2)z3=z1(z2z3) 乘法結合率 (multiplicative associativity)
(P7) z⋅(1,0)=z⋅1=z 乘法單位元素 (multiplicative identity)
(P8) z⋅z1=1 乘法反元素 (multiplicative inverse)
(P9) z1⋅(z2+z3)=z1⋅z2+z1⋅z3 乘法對加法之分配率 (distributive law)
[證明]
以規則(P5)為例證明如下:
z1⋅z2=(x1,y1)(x2,y2)=(x1x2−y1y2,x1y2+x2y1) 由上述乘法定理得知
z2⋅z1=(x2,y2)(x1,y1)=(x2x1−y2y1,x2y1+x1y2) 由上述乘法定理得知
因此 z1z2=z2z1成立。其餘規則自行練習 ■
定義1.2-3. Re(z)=Re(x+iy)=x=z 的實部 =Re(z)
Im(z)=Im(x+iy)=y=z 的虛部 =Im(z)
定義1.2-4. z 的共軛複數 (complex conjugate) z 為 z−iy=(x,−y)
定義1.2-5. z=x+iy 的長度 (magnitude)或稱為模 (modulus) ∣z∣ 定義為 ∣z∣=x2+y2.
引理1.3-1. 設 z,z1,z2∈C,則
- z=z
- z1+z2=z1+z2 (共軛對加法之分配律)
- z1z2=z1 z2
- z1/z2=z1/z2
[證明]
第2點證明如下,其餘自行練習。設 z1=(x1,y1) 以及 z2=(x2,y2),則
z1+z2=(x1+x2,y1+y2)=(x1+x2,y1+y2)=(x1,−y1)+(x2,−y2)=z1+z2(加法定理)(共軛)(加法定理) ■
性質 : 設 z=(x,y), z1=(x1,y1) 以及 z2=(x2,y2),則有
- −z=(−x,−y)
- z⋅z=∣z∣2
- z−1=∣z∣2z
- z2z1=z1⋅z2−1=z1⋅∣z2∣2z2
- Re(z)=2z+z,Im(z)=2iz−z
- Re(z1+z2)=Re(z1)+Re(z2) (Re 對加法之分配律)
Im(z1+z2)=Im(z1)+Im(z2) (Im 對加法之分配律)
- Re(iz)=−Im(z),Im(iz)=Re(z)
[證明]
以性質7為例證明如下:
Re(z1+z2)=2z1+z2+z1+z2=2z1+z2+z1+z2=2z1+z1+2z2+z2=Re(z1)+Re(z2)(性質6)(共軛對加法之分配律)(性質3) 同理可得 Im(z1+z2)=Im(z1)+Im(z2),因此性質成立。其餘性質自行練習 ■
注意:5⋅2=5⋅2=10 成立,但是 −5⋅−2=(−5)⋅(−2) 而是 −5⋅−2=5i⋅2i=10i2=−10。
從上述討論,將複數系加入原來的數系,可以形成完整的數系,圖示如下:
%202e77b635de084bcda0f717c2d1939e9c/Untitled.png)
圖1.2-1: 完整的數系 1️⃣
1️⃣
Stephen Welch, Imaginary Numbers Are Real-WORKBOOK, 2016. (Figure 39)
習題
- 證明式(1.2-1)成立
- Find f(1+i) for the following functions:
(c) f(z)=f(x+iy)=x+y+i(x3y−y2)
- Let f(z)=z21−5z7+9z4. Use polar coordinates to find
(b) f(1+i3)
- Express the following functions in the form u(x,y)+iv(x,y).
(b) f(z)=z2+(2−3i)z.
- Express the following functions in the polar coordinate form u(r,θ)+iv(r,θ).
(a) f(z)=z5+z5.
6. For z=0, let f(z)=f(x+iy)=21ln(x2+y2)+i arctan xy. Find
(c) f(1+i3)
- For z=0, let f(z)=lnr+iθ, where r=∣z∣, and θ=Arg z. Find
(a) f(1)
(b) f(−2)
(c) f(1+i)
(d) f(3+4i)
(e) Is f a one-to-one function? Why or why not?
- Suppose that f maps A into B, g maps B into A, and that Equation “g(f(z))=z, ∀ z∈A and f(g(w))=w, ∀ w∈B” hold.
(a) Show that f is one-to-one.
(b) Show that f maps A onto B.
10. Let w=f(z)=(3+4i)z−2+i.
(a) Find the image of the disk ∣z−1∣<1.
(b) Find the image of the line x=t, y=1−2t for −∞<t<∞.
(c) Find the image of the half-plane Im(z)>1.
(d) For parts (a) and (b), and (c), sketch the mapping. Identify three points of your choice and their corresponding images.
- Find the linear transformations w=f(z) that satisfy the following conditions.
(a) The points z1=2 and z2=−3i map onto w1=1+i and w2=1.
(b) The circle ∣z∣=1 maps onto the circle ∣w−3+2i∣=5, andf(−i)=3+3i.
(c) The triangle with vertices −4+2i, −4+7i, and 1+2i maps onto the triangle with vertices 1, 0, and 1+i, respectively.