1.2 複數的代數運算(The Algebra of Complex Numbers)


我們首先將複數 (complex number) 視為由實數組成的有序對,其乘以任意實數的作法,與在歐氏平面 R2\R^2 相同,亦即


定義1.2-1. zz 為複數 (zCz\in\mathbb{C}),即存在有 x,yRx,y \in \R 使得 z=(x,y)z=(x,y) ,且對任意 αR\alpha \in\R ,則有

αz=α(x,y)=(αx,αy).\alpha z = \alpha(x,y)=(\alpha x,\alpha y).


和我們在高中使用的符號 z=x+iyz=x+i y 比對一下,則有 1=(1,0)1=(1,0)i=(0,1)i=(0,1) 以及 原點 z=0z=0 表為 0=(0,0)0=(0,0)

GeoGebra 1: 複數乘以實數倍圖示

複數的四則運算定義如下:


定義1.2-2. z1=(x1,y1),z2=(x2,y2)Cz_1=(x_1,y_1),z_2=(x_2,y_2)\in \mathbb{C} ,則在複數上的四則代數運算定義如下:

="``=" (x1,y1)=(x2,y2)    x1=x2,y1=y2,(x_1,y_1)=(x_2,y_2)\iff x_1=x_2, y_1=y_2,

+"``+" z1+z2=(x1,y1)+(x2,y2)=(x1+x2,y1+y2),z_1+z_2=(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2),

"``-" z1z2=(x1,y1)(x2,y2)=(x1x2,y1y2)z_1-z_2=(x_1,y_1)-(x_2,y_2)=(x_1-x_2,y_1-y_2)

z1+(z2)=(x1,y1)+(x2,y2),z_1+(-z_2)=(x_1,y_1)+(-x_2,-y_2),

×"``\times" z1×z2=(x1,y1)×(x2,y2)=(x1x2y1y2,x1y2+y1x2),z_1\times z_2=(x_1,y_1)\times(x_2,y_2)=(x_1 x_2-y_1 y_2,x_1 y_2+y_1 x_2),

÷"``\div" z1÷z2=z1z2=(x1,y1)(x2,y2)=(x1x2+y1y2x22+y22,x1y2y1x2x22+y22)\displaystyle z_1\div z_2=\frac{z_1}{z_2}=\frac{(x_1,y_1)}{(x_2,y_2)}=\left(\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2},\frac{x_1y_2-y_1x_2}{x_2^2+y_2^2}\right) 其中 z2=(x2,y2)0z_2=(x_2, y_2)\neq 0.


Geogebra 2: 複數的四則運算圖示

定義1.2-2可知下式成立:

1z=(xx2+y2,yx2+y2).(1.2-1)\frac{1}{z}=\left(\frac{x}{x^2+y^2},\frac{-y}{x^2+y^2}\right).\tag{1.2-1}

透過定義1.2-11.2-2,可以將複數集合視為

C={(x,y)R2(x1,y1)+(x2,y2)=(x1+x2,y1+y2)(x1,y1)(x2,y2)=(x1x2y1y2,x1y2+y1x2)}\mathbb{C}=\left\{(x,y)\in\mathbb{R}^2\left|\begin{array}{l} (x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)\\ (x_1,y_1)\cdot(x_2,y_2)=(x_1 x_2-y_1 y_2,x_1y_2+y_1 x_2)\end{array}\right.\right\}

以下將說明此複數是體 (field)。


定理1.2-1. (C,+,)(\cnums,+,\cdot) 是一個體,設z1,z2,z3,zCz_1,z_2,z_3,z \in \cnums,則

(P1) z1+z2=z2+z1z_1+z_2=z_2+z_1 加法交換率 (additive commutativity)

(P2) (z1+z2)+z3=z1+(z2+z3)(z_1+z_2)+z_3=z_1+(z_2+z_3) 加法結合率 (additive associativity)

(P3) z+(0,0)=z+0=zz+(0,0)=z+0=z 加法單位元素 (additive identity)

(P4) z+(z)=0z+(-z)=0 加法反元素 (additive inverse)

(P5) z1z2=z2z1z_1z_2=z_2z_1 乘法交換率 (multiplicative commutativity)

(P6) (z1z2)z3=z1(z2z3)(z_1z_2)z_3=z_1(z_2z_3) 乘法結合率 (multiplicative associativity)

(P7) z(1,0)=z1=zz\cdot(1,0)=z\cdot1=z 乘法單位元素 (multiplicative identity)

(P8) z1z=1\displaystyle z\cdot\frac{1}{z}=1 乘法反元素 (multiplicative inverse)

(P9) z1(z2+z3)=z1z2+z1z3z_1\cdot(z_2+z_3)=z_1 \cdot z_2+z_1\cdot z_3 乘法對加法之分配率 (distributive law)



定義1.2-3. Re(z)=Re(x+iy)=x=z\text{Re}(z)=\text{Re}(x+iy)=x=z 的實部 =Re(z)=\text{Re}(z)

Im(z)=Im(x+iy)=y=z\text{Im}(z)=\text{Im}(x+iy)=y=z 的虛部 =Im(z)=\text{Im}(z)

定義1.2-4. zz共軛複數 (complex conjugate) z\overline zziy=(x,y)z-iy=(x,-y)

定義1.2-5. z=x+iyz=x+i y長度 (magnitude)或稱為(modulus) z|z| 定義為 z=x2+y2.|z|=\sqrt{x^2+y^2}.



引理1.3-1. z,z1,z2Cz,z_1,z_2\in\cnums,則

  1. z=z\overline z=z
  1. z1+z2=z1+z2\overline{z_1+z_2}=\overline{z_1}+\overline{z_2} (共軛對加法之分配律)
  1. z1z2=z1 z2\overline{z_1z_2}=\overline{z_1}\text{ }\overline{z_2}
  1. z1/z2=z1/z2\overline{z_1/z_2}=\overline{z_1}/\overline{z_2}


性質 :z=(x,y)z=(x,y)z1=(x1,y1)z_1=(x_1,y_1) 以及 z2=(x2,y2)z_2=(x_2,y_2),則有

  1. z=(x,y)-z=(-x,-y)
  1. zz=z2z \cdot \overline z=|z|^2
  1. z1=zz2\displaystyle z^{-1}=\frac{\overline z}{\left| z\right|^2}
  1. z1z2=z1z21=z1z2z22\displaystyle\frac{z_1}{z_2}=z_1\cdot z_2{}^{-1}=z_1\cdot\frac{\overline {z_2}}{\left|z_2\right|^2}
  1. Re(z)=z+z2,Im(z)=zz2i\displaystyle\mathrm{Re}(z)=\frac{z+\overline z}{2},\quad\mathrm{Im}(z)=\frac{z-\overline z}{2i}
  1. Re(z1+z2)=Re(z1)+Re(z2)\mathrm{Re}(z_1+z_2)=\mathrm{Re}(z_1)+\mathrm{Re}(z_2) (Re\mathrm{Re} 對加法之分配律)

    Im(z1+z2)=Im(z1)+Im(z2)\mathrm{Im}(z_1+z_2)=\mathrm{Im}(z_1)+\mathrm{Im}(z_2) (Im\mathrm{Im} 對加法之分配律)
  1. Re(iz)=Im(z),Im(iz)=Re(z)\mathrm{Re}(iz)=-\mathrm{Im}(z),\quad\mathrm{Im}(iz)=\mathrm{Re}(z)

注意:52=52=10\sqrt{5}\cdot\sqrt{2}=\sqrt{5\cdot 2}=\sqrt{10} 成立,但是 52(5)(2)\sqrt{-5}\cdot\sqrt{-2}\neq\sqrt{(-5)\cdot (-2)} 而是 52=5i2i=10i2=10\sqrt{-5}\cdot\sqrt{-2}=\sqrt{5}i \cdot\sqrt{2}i =\sqrt{10} i^2=-\sqrt{10}

從上述討論,將複數系加入原來的數系,可以形成完整的數系,圖示如下:

圖1.2-1: 完整的數系 1️⃣


1️⃣

Stephen Welch, Imaginary Numbers Are Real-WORKBOOK, 2016. (Figure 39)

習題
  1. 證明式(1.2-1)成立
  1. Find f(1+i)f(1+i) for the following functions:

    (c) f(z)=f(x+iy)=x+y+i(x3yy2)f(z)=f(x+iy)=x+y+i(x^3y-y^2)

  1. Let f(z)=z215z7+9z4f(z)=z^{21}-5z^7+9z^4. Use polar coordinates to find

    (b) f(1+i3)f(1+i\sqrt{3})

  1. Express the following functions in the form u(x,y)+iv(x,y)u(x,y)+iv(x,y).

    (b) f(z)=z2+(23i)zf(z)=\overline{z}^2+(2-3i)z.

  1. Express the following functions in the polar coordinate form u(r,θ)+iv(r,θ)u(r,\theta)+iv(r,\theta).

    (a) f(z)=z5+z5f(z)=z^5+\overline{z}^5.

6. For z0z \neq 0, let f(z)=f(x+iy)=12ln(x2+y2)+i arctan yxf(z)=f(x+iy)=\frac{1}{2}\ln{(x^2+y^2)}+i\space \text{arctan}\space \frac{y}{x}. Find

(c) f(1+i3)f(1+i\sqrt{3})

  1. For z0z\neq0, let f(z)=lnr+iθf(z)=\ln{r}+i\theta, where r=zr=|z|, and θ=Arg z\theta=\text{Arg}\space z. Find

    (a) f(1)f(1)

    (b) f(2)f(-2)

    (c) f(1+i)f(1+i)

    (d) f(3+4i)f(3+4i)

    (e) Is ff a one-to-one function? Why or why not?

  1. Suppose that ff maps AA into BB, gg maps BB into AA, and that Equation “g(f(z))=zg(f(z))=z,  zA\forall \space z \in A and f(g(w))=wf(g(w))=w,  wB\forall \space w\in B” hold.

    (a) Show that ff is one-to-one.

    (b) Show that ff maps AA onto BB.

10. Let w=f(z)=(3+4i)z2+iw=f(z)=(3+4i)z-2+i.

(a) Find the image of the disk z1<1|z-1|<1.

(b) Find the image of the line x=tx=t, y=12ty=1-2t for <t<-\infty<t<\infty.

(c) Find the image of the half-plane Im(z)>1\text{Im}(z)>1.

(d) For parts (a) and (b), and (c), sketch the mapping. Identify three points of your choice and their corresponding images.

  1. Find the linear transformations w=f(z)w=f(z) that satisfy the following conditions.

    (a) The points z1=2z_1=2 and z2=3iz_2=-3i map onto w1=1+iw_1=1+i and w2=1w_2=1.

    (b) The circle z=1|z|=1 maps onto the circle w3+2i=5|w-3+2i|=5, andf(i)=3+3i f(-i)=3+3i.

    (c) The triangle with vertices 4+2i-4+2i, 4+7i-4+7i, and 1+2i1+2i maps onto the triangle with vertices 11, 00, and 1+i1+i, respectively.