6.4 參考解答

  1. czez dz=1iπ22+iπzez dz=zez 1iπ22+iπ1iπ22+iπez dz=(zezez) 1iπ22+iπ\int_c ze^z\space dz=\int_{-1-i\frac{\pi}{2}}^{2+i\pi} ze^z\space dz=ze^z\space |_{-1-i\frac{\pi}{2}}^{2+i\pi}-\int_{-1-i\frac{\pi}{2}}^{2+i\pi} e^z\space dz=(ze^z-e^z)\space |_{-1-i\frac{\pi}{2}}^{2+i\pi}

    =(2+iπ1)e2+iπ(1iπ21)e1iπ2=(2+i\pi-1)e^{2+i\pi}-(-1-i\frac{\pi}{2}-1)e^{-1-i\frac{\pi}{2}}

    =(1+iπ)e2+iπ+(2+iπ2)e1iπ2=(1+i\pi)e^{2+i\pi}+(2+i\frac{\pi}{2})e^{-1-i\frac{\pi}{2}}

    =(1+iπ)e2(cosπ+isinπ)+(2+iπ2)e1(cosπ2isinπ2)=(1+i\pi)e^2(\cos{\pi}+i\sin{\pi})+(2+i\frac{\pi}{2})e^{-1}(\cos{\frac{\pi}{2}}-i\sin{\frac{\pi}{2}})

    =(1iπ)e2+(i)(2+iπ2)e1=(-1-i\pi)e^2+(-i)(2+i\frac{\pi}{2})e^{-1}

    =e2+π2e1+i(πe22e1)=-e^2+\frac{\pi}{2}e^{-1}+i(-\pi e^2-2e^{-1})

    =(1+12e3π)e2+i(π2e3)e2=(-1+\frac{1}{2}e^{-3}\pi)e^2+i(-\pi-2e^{-3})e^2

9. Czcosz dz=0izcosz dz=zsinz 0i0isinz dz\int_C z\cos{z}\space dz=\int_{0}^{i} z\cos{z}\space dz=z\sin{z}\space |_{0}^{i}-\int_{0}^{i} \sin{z}\space dz

=isini(cosz) 0i=i\sin{i}-(-\cos{z})\space |_{0}^{i}

=isini(cosi+cos0)=i\sin{i}-(-\cos{i}+\cos{0})

=isini+cosi1=i\sin{i}+\cos{i}-1

=1sinh1+cosh1=-1-\sinh{1}+\cosh{1}

  1. C2z1z2z dz=C1z dz+C1z1 dz\int_C \frac{2z-1}{z^2-z}\space dz=\int_C \frac{1}{z}\space dz+\int_C \frac{1}{z-1}\space dz

    =22+i1z dz+22+i1z1 dz=\int_{2}^{2+i} \frac{1}{z}\space dz+\int_{2}^{2+i} \frac{1}{z-1}\space dz

    =[Log(2+i)Log(2)]+[Log(2+i1)Log(21)]=[\text{Log}(2+i)-\text{Log}(2)]+[\text{Log}(2+i-1)-\text{Log}(2-1)]

    =[Log(2+i)Log(2)]+[Log(1+i)Log(1)]=[\text{Log}(2+i)-\text{Log}(2)]+[\text{Log}(1+i)-\text{Log}(1)]

    =(ln5+tan112)(ln2+i0)+(ln2+iπ4)(ln1+i0)=(\ln{\sqrt{5}}+\tan^{-1}\frac{1}{2})-(\ln{2}+i \cdot 0)+(\ln{\sqrt{2}+i\frac{\pi}{4}})-(\ln{1}+i\cdot 0)

    =ln5ln2+ln2+i(π4+tan112)=\ln{\sqrt{5}}-\ln{2}+\ln{\sqrt{2}}+i(\frac{\pi}{4}+\tan^{-1}\frac{1}{2})

    =ln5ln2+i(π4+tan112)=\ln{\sqrt{5}}-\ln{\sqrt{2}}+i(\frac{\pi}{4}+\tan^{-1}\frac{1}{2})