- ∫czez dz=∫−1−i2π2+iπzez dz=zez ∣−1−i2π2+iπ−∫−1−i2π2+iπez dz=(zez−ez) ∣−1−i2π2+iπ
=(2+iπ−1)e2+iπ−(−1−i2π−1)e−1−i2π
=(1+iπ)e2+iπ+(2+i2π)e−1−i2π
=(1+iπ)e2(cosπ+isinπ)+(2+i2π)e−1(cos2π−isin2π)
=(−1−iπ)e2+(−i)(2+i2π)e−1
=−e2+2πe−1+i(−πe2−2e−1)
=(−1+21e−3π)e2+i(−π−2e−3)e2
9. ∫Czcosz dz=∫0izcosz dz=zsinz ∣0i−∫0isinz dz
=isini−(−cosz) ∣0i
=isini−(−cosi+cos0)
=isini+cosi−1
=−1−sinh1+cosh1
- ∫Cz2−z2z−1 dz=∫Cz1 dz+∫Cz−11 dz
=∫22+iz1 dz+∫22+iz−11 dz
=[Log(2+i)−Log(2)]+[Log(2+i−1)−Log(2−1)]
=[Log(2+i)−Log(2)]+[Log(1+i)−Log(1)]
=(ln5+tan−121)−(ln2+i⋅0)+(ln2+i4π)−(ln1+i⋅0)
=ln5−ln2+ln2+i(4π+tan−121)
=ln5−ln2+i(4π+tan−121)