- (a) C1:z1(t)=2eit, 0≤t≤2π
C2:z2(t)=−t+i(2−t), 0≤t≤2
7. (e) f(z)=z+1, C1+(0):z=eit
∫Cf(z) dz=∫02π(eit+1)⋅ieit dt
=∫02πiei2t+ieit dt
=21ei2t+ieit ∣02π
=(21eiπ+ei2π)−(21e0+e0)
=(−21+i)−(21+1)
=−21+i−21−1
=i−2
- (a) ∫CR+(z0)z−z01 dz,z=z0+Reit
=∫02πz0+reit−z01(iReit) dt
=∫02πi dt
=it ∣02π
=2πi
12. z2=(t+it2)2=t2+i2t3−t4, z’(t)=1+i2t
∣z2∣=∣(t2−t4)+i2t3∣=(t2−t4)2+(2t3)2=t4−2t6+t8+4t6
=t4+2t6+t8=(t2+t4)2=t2+t4
∴∫C∣z2∣ dz=∫01∣(z(t))2∣⋅(z’(t)) dt
=∫01(t2+t4)⋅(1+i2t) dt
=∫01t2+i2t3+t4+i2t5 dt
=∫01(t2+t4)+i(2t3+2t5) dt
=(31t3+51t5)+i(21t4+31t6) ∣01
=(31+51)+i(21+31)−0
=158+i65