6.1 參考解答

  1. (c) 0π2cosh(it) dt=isinhit 0π2\int_{0}^{\frac{\pi}{2}} \cosh{(it)} \space dt=-i\sinh{it}\space|_{0}^{\frac{\pi}{2}}

    =i[sinh(iπ2)sinh(i0)]=-i[\sinh{(i\frac{\pi}{2})}-\sinh{(i \cdot 0)}]

    =i[sinh0cosπ2+icosh0sinπ2]=-i[\sinh{0}\cos{\frac{\pi}{2}}+i\cosh{0}\sin{\frac{\pi}{2}}]

    =ii=-i \cdot i

    =1=1

    (e) 0π4teit dt=0π4t(cost+isint) dt\int_{0}^{\frac{\pi}{4}} te^{it} \space dt=\int_{0}^{\frac{\pi}{4}} t(\cos{t}+i\sin{t}) \space dt

    =0π4tcost dt+i0π4sint dt=\int_{0}^{\frac{\pi}{4}} t\cos{t} \space dt+i\int_{0}^{\frac{\pi}{4}} \sin{t} \space dt

    =[tsint 0π40π4sint dt]+i[tcost 0π4+0π4cost dt]=[t\sin{t}\space |_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \sin{t} \space dt]+i[-t\cos{t}\space |_{0}^{\frac{\pi}{4}}+\int_{0}^{\frac{\pi}{4}} \cos{t} \space dt]

    =[(π4sinπ40)(cost 0π4)]+i[(π4cosπ40)+(sint 0π4)]=[(\frac{\pi}{4}\sin{\frac{\pi}{4}}-0)-(-\cos{t}\space |_{0}^{\frac{\pi}{4}})]+i[(-\frac{\pi}{4}\cos{\frac{\pi}{4}}-0)+(\sin{t}\space |_{0}^{\frac{\pi}{4}})]

    =2π8(cosπ4+cos0)+i[2π8+(sinπ4sin0)]=\frac{\sqrt{2}\pi}{8}-(-\cos{\frac{\pi}{4}}+\cos{0})+i[-\frac{\sqrt{2}\pi}{8}+(\sin{\frac{\pi}{4}}-\sin{0})]

    =2π8+221+i(222π8)=\frac{\sqrt{2}\pi}{8}+\frac{\sqrt{2}}{2}-1+i(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}\pi}{8})

  1. 11^。 m=nm=n

    02πeimteint dt=02πe0 dt=t 02π=2π\int_{0}^{2\pi} e^{imt} \cdot e^{-int} \space dt=\int_{0}^{2\pi} e^0 \space dt=t \space |_{0}^{2\pi}=2\pi 

    22^。 mnm \neq n

    02πeimteint dt\int_{0}^{2\pi} e^{imt} \cdot e^{-int} \space dt

    =02πei(mn)t dt=\int_{0}^{2\pi} e^{i(m-n)t} \space dt

    =02πcos(mn)t+isin(mn)t dt=\int_{0}^{2\pi} \cos{(m-n)t}+i\sin{(m-n)t} \space dt

    =02πcos(mn)t dt+i02πsin(mn)t dt=\int_{0}^{2\pi} \cos{(m-n)t} \space dt+i\int_{0}^{2\pi} \sin{(m-n)t} \space dt

    =1mnsin(mn)t 02πi1mncos(mn)t 02π=\frac{1}{m-n}\sin{(m-n)t} \space |_{0}^{2\pi}-i\frac{1}{m-n}\cos{(m-n)t} \space |_{0}^{2\pi}

    =1mn[(sin(mn)2πsin(mn)0)i(cos(mn)2πcos(mn)0)]=\frac{1}{m-n}[(\sin{(m-n)2\pi}-\sin{(m-n)0})-i(\cos{(m-n)2\pi}-\cos{(m-n)0})]

    =0=0

  1. 0ezt dt=1zezt t=0t=\int_{0}^{\infty} e^{-zt}\space dt=-\frac{1}{z}e^{-zt}\space |_{t=0}^{t=\infty}

    =1z(limteztlimt0ezt)=-\frac{1}{z}(\lim_{t \to \infty} e^{-zt}-\lim_{t \to 0} e^{-zt}) if Re(z)<0limtezt\text{Re}(z)<0 \Rightarrow \lim_{t \to \infty} e^{-zt} diverges

    =1z(01)=-\frac{1}{z}(0-1)

    =1z=\frac{1}{z}

5. abf(t) dt=F(t) ab=F(b)F(a)\ast \int_{a}^{b} f(t)\space dt=F(t) \space |_{a}^{b}=F(b)-F(a)

ddt[12(f(t))2]=f(t)f(t)\frac{d}{dt}[\frac{1}{2}(f(t))^2]=f(t)f’(t)

abf(t)f(t) dt=12(f(t))2 ab=12(f(b))212(f(a))2\int_{a}^{b} f(t)f’(t)\space dt=\frac{1}{2}(f(t))^2\space |_{a}^{b}=\frac{1}{2}(f(b))^2-\frac{1}{2}(f(a))^2

  1. i0π2etsint dt=i[etsint 0π20π2etcost dt]i\int_{0}^{\frac{\pi}{2}} e^t\sin{t}\space dt=i[e^t\sin{t}\space |_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} e^t\cos{t}\space dt]

    =i[(eπ2sinπ2e0sin0)0π2etcost dt]=i[(e^{\frac{\pi}{2}}\sin{\frac{\pi}{2}}-e^0\sin{0})-\int_{0}^{\frac{\pi}{2}} e^t\cos{t}\space dt]

    =i[eπ2(etcost 0π2+0π2etsint dt)]=i[e^{\frac{\pi}{2}}-(e^t\cos{t}\space |_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}} e^t\sin{t}\space dt)]

    =i[eπ2[(eπ2cosπ2e0cos0)+0π2etsint dt]]=i[e^{\frac{\pi}{2}}-[(e^{\frac{\pi}{2}}\cos{\frac{\pi}{2}}-e^0\cos{0})+\int_{0}^{\frac{\pi}{2}} e^t\sin{t}\space dt]]

    =i[(eπ2+1)0π2etsint dt]=i[(e^{\frac{\pi}{2}}+1)-\int_{0}^{\frac{\pi}{2}} e^t\sin{t}\space dt]

    2i0π2etsint dt=i(eπ2+1)\Rightarrow 2i\int_{0}^{\frac{\pi}{2}} e^t\sin{t}\space dt=i(e^{\frac{\pi}{2}}+1)

    i0π2etsint dt=i2(eπ2+1)\Rightarrow i\int_{0}^{\frac{\pi}{2}} e^t\sin{t}\space dt=\frac{i}{2}(e^{\frac{\pi}{2}}+1)