- (c) ∫02πcosh(it) dt=−isinhit ∣02π
=−i[sinh(i2π)−sinh(i⋅0)]
=−i[sinh0cos2π+icosh0sin2π]
=−i⋅i
=1
(e) ∫04πteit dt=∫04πt(cost+isint) dt
=∫04πtcost dt+i∫04πsint dt
=[tsint ∣04π−∫04πsint dt]+i[−tcost ∣04π+∫04πcost dt]
=[(4πsin4π−0)−(−cost ∣04π)]+i[(−4πcos4π−0)+(sint ∣04π)]
=82π−(−cos4π+cos0)+i[−82π+(sin4π−sin0)]
=82π+22−1+i(22−82π)
- 1。 m=n
∫02πeimt⋅e−int dt=∫02πe0 dt=t ∣02π=2π
2。 m=n
∫02πeimt⋅e−int dt
=∫02πei(m−n)t dt
=∫02πcos(m−n)t+isin(m−n)t dt
=∫02πcos(m−n)t dt+i∫02πsin(m−n)t dt
=m−n1sin(m−n)t ∣02π−im−n1cos(m−n)t ∣02π
=m−n1[(sin(m−n)2π−sin(m−n)0)−i(cos(m−n)2π−cos(m−n)0)]
=0
- ∫0∞e−zt dt=−z1e−zt ∣t=0t=∞
=−z1(limt→∞e−zt−limt→0e−zt) if Re(z)<0⇒limt→∞e−zt diverges
=−z1(0−1)
=z1
5. ∗∫abf(t) dt=F(t) ∣ab=F(b)−F(a)
dtd[21(f(t))2]=f(t)f’(t)
∫abf(t)f’(t) dt=21(f(t))2 ∣ab=21(f(b))2−21(f(a))2
- i∫02πetsint dt=i[etsint ∣02π−∫02πetcost dt]
=i[(e2πsin2π−e0sin0)−∫02πetcost dt]
=i[e2π−(etcost ∣02π+∫02πetsint dt)]
=i[e2π−[(e2πcos2π−e0cos0)+∫02πetsint dt]]
=i[(e2π+1)−∫02πetsint dt]
⇒2i∫02πetsint dt=i(e2π+1)
⇒i∫02πetsint dt=2i(e2π+1)