- ∗cosz=Σn=0∞(−1)n(2n)!z2n, sinz=Σn=0∞(−1)n(2n+1)!z2n+1
dzdcosz=dzd[Σn=0∞(−1)n(2n)!z2n]
=Σn=0∞[dzd(−1)n(2n)!z2n]
=Σn=1∞(2n)!(−1)n⋅2n⋅z2n−1
=Σn=1∞(−1)n(2n−1)!z2n−1
=Σn=0∞(−1)n+1(2n+1)!z2n+1
=−Σn=0∞(−1)n(2n+1)!z2n+1
=−sinz
5. ∗sinz=sinxcoshy+icosxsinhy
sinhz=sinhxcosy+icoshxsiny
(e) Let z=x+iy, iz=−y+ix
siniz=sin(−y)coshx+icos(−y)sinhx
=−sinycoshx+icosysinhx
=i(sinhxcosy+icoshxsiny)
=isinhz
- (b) ∗sinz=sinxcoshy+icosxsinhy
sin4π+4i=sin(4π+i)
=sin4πcosh1+icos4πsinh1
=22cosh1+i22sinh1
=22(cosh1+isinh1)
(e) ∗tanz=cos2x+cosh2ysin2x+icos2x+cosh2ysinh2y
tan4π+2i=tan(4π+21i)
=cos2π+cosh1sin2π+icos2π+cosh1sinh1
=cosh11+icosh1sinh1
(g) ∗sinhz=sinhxcosy+icoshxsiny
sinh(1+iπ)=sinh1cosπ+icosh1sinπ
=−sinh1
10. (e) ∗coshz=2ez+e−z
coshz=2ez+e−z
⇒2coshz=ez+e−z=2
⇒e2z−2ez+1=0
⇒(ez−1)2=0
⇒ez=1
z=log(1)=ln∣1∣+iarg1=i(2nπ), n∈Z
- ∗ ϕxx+ϕyy=0
(b) hx=−sinxsinhy, hy=cosxcoshy
hxx=−cosxsinhy, hyy=cosxsinhy
∵hxx+hyy=−cosxsinhy+cosxsinhy=0
∴h(x,y)=cosxsinhy is harmonic.