5.4 參考解答

  1. cosz=Σn=0(1)nz2n(2n)!\ast \cos{z}=\Sigma_{n=0}^{\infty} (-1)^n\frac{z^{2n}}{(2n)!}, sinz=Σn=0(1)nz2n+1(2n+1)!\sin{z}=\Sigma_{n=0}^{\infty} (-1)^n\frac{z^{2n+1}}{(2n+1)!}

    ddzcosz=ddz[Σn=0(1)nz2n(2n)!]\frac{d}{dz} \cos{z}=\frac{d}{dz} [\Sigma_{n=0}^{\infty} (-1)^n\frac{z^{2n}}{(2n)!}]

    =Σn=0[ddz(1)nz2n(2n)!]=\Sigma_{n=0}^{\infty} [\frac{d}{dz} (-1)^n\frac{z^{2n}}{(2n)!}]

    =Σn=1(1)n(2n)!2nz2n1=\Sigma_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \cdot 2n \cdot z^{2n-1}

    =Σn=1(1)nz2n1(2n1)!=\Sigma_{n=1}^{\infty} (-1)^n\frac{z^{2n-1}}{(2n-1)!}

    =Σn=0(1)n+1z2n+1(2n+1)!=\Sigma_{n=0}^{\infty} (-1)^{n+1}\frac{z^{2n+1}}{(2n+1)!}

    =Σn=0(1)nz2n+1(2n+1)!=-\Sigma_{n=0}^{\infty} (-1)^n\frac{z^{2n+1}}{(2n+1)!}

    =sinz=-\sin{z}

5. sinz=sinxcoshy+icosxsinhy\ast \sin{z}=\sin{x}\cosh{y}+i\cos{x}\sinh{y}

sinhz=sinhxcosy+icoshxsiny\sinh{z}=\sinh{x}\cos{y}+i\cosh{x}\sin{y}

(e) Let z=x+iyz=x+iy, iz=y+ixiz=-y+ix

siniz=sin(y)coshx+icos(y)sinhx\sin{iz}=\sin{(-y)}\cosh{x}+i\cos{(-y)}\sinh{x}

=sinycoshx+icosysinhx=-\sin{y}\cosh{x}+i\cos{y}\sinh{x}

=i(sinhxcosy+icoshxsiny)=i(\sinh{x}\cos{y}+i\cosh{x}\sin{y})

=isinhz=i\sinh{z}

  1. (b) sinz=sinxcoshy+icosxsinhy\ast \sin{z}=\sin{x}\cosh{y}+i\cos{x}\sinh{y}

    sinπ+4i4=sin(π4+i) \sin{\frac{\pi+4i}{4}}=\sin{(\frac{\pi}{4}+i)}

    =sinπ4cosh1+icosπ4sinh1=\sin{\frac{\pi}{4}}\cosh{1}+i\cos{\frac{\pi}{4}}\sinh{1}

    =22cosh1+i22sinh1=\frac{\sqrt{2}}{2}\cosh{1}+i\frac{\sqrt{2}}{2}\sinh{1}

    =22(cosh1+isinh1)=\frac{\sqrt{2}}{2}(\cosh{1}+i\sinh{1})

    (e) tanz=sin2xcos2x+cosh2y+isinh2ycos2x+cosh2y\ast \tan{z}=\frac{\sin{2x}}{\cos{2x}+\cosh{2y}}+i\frac{\sinh{2y}}{\cos{2x}+\cosh{2y}}

    tanπ+2i4=tan(π4+12i)\tan{\frac{\pi+2i}{4}}=\tan{(\frac{\pi}{4}+\frac{1}{2}i)}

    =sinπ2cosπ2+cosh1+isinh1cosπ2+cosh1=\frac{\sin{\frac{\pi}{2}}}{\cos{\frac{\pi}{2}}+\cosh{1}}+i\frac{\sinh{1}}{\cos{\frac{\pi}{2}}+\cosh{1}}

    =1cosh1+isinh1cosh1=\frac{1}{\cosh{1}}+i\frac{\sinh{1}}{\cosh{1}}

    (g) sinhz=sinhxcosy+icoshxsiny\ast \sinh{z}=\sinh{x}\cos{y}+i\cosh{x}\sin{y}

    sinh(1+iπ)=sinh1cosπ+icosh1sinπ\sinh{(1+i\pi)}=\sinh{1}\cos{\pi}+i\cosh{1}\sin{\pi}

    =sinh1=-\sinh{1}

10. (e) coshz=ez+ez2\ast \cosh{z}=\frac{e^z+e^{-z}}{2}

coshz=ez+ez2\cosh{z}=\frac{e^z+e^{-z}}{2}

2coshz=ez+ez=2\Rightarrow 2\cosh{z}=e^z+e^{-z}=2

e2z2ez+1=0\Rightarrow e^{2z}-2e^z+1=0

(ez1)2=0\Rightarrow (e^z-1)^2=0

ez=1\Rightarrow e^z=1

z=log(1)=ln1+iarg1=i(2nπ)z=\log{(1)}=\ln{|1|}+i\arg{1}=i(2n\pi), nZn \in \mathbb{Z}

  1.  ϕxx+ϕyy=0\ast\space \phi_{xx}+\phi_{yy}=0

    (b) hx=sinxsinhyh_x=-\sin{x}\sinh{y}, hy=cosxcoshyh_y=\cos{x}\cosh{y}

    hxx=cosxsinhyh_{xx}=-\cos{x}\sinh{y}, hyy=cosxsinhyh_{yy}=\cos{x}\sinh{y}

    hxx+hyy=cosxsinhy+cosxsinhy=0\because h_{xx}+h_{yy}=-\cos{x}\sinh{y}+\cos{x}\sinh{y}=0

    h(x,y)=cosxsinhy\therefore h(x,y)=\cos{x}\sinh{y} is harmonic.