5.4 三角與雙曲函數 (Trigonometric and Hyperbolic Functions)

三角函數

複數的三角函數定義如下:

定義5.4-1.zCz\in\mathbb{C}

sin(z)=n=0(1)nz2n+1(2n+1)!,cos(z)=n=0(1)nz2n(2n)!,(5.4-1a)\sin(z)=\sum_{n=0}^\infty (-1)^n\frac{z^{2n+1}}{(2n+1)!},\quad \cos(z)=\sum_{n=0}^\infty (-1)^n\frac{z^{2n}}{(2n)!}, \tag{5.4-1a}

以及

tan(z)=sin(z)cos(z), cot(z)=cos(z)sin(z), sec(z)=1cos(z), csc(z)=1sin(z).(5.4-1b)\tan(z)=\frac{\sin(z)}{\cos(z)},~ \cot(z)=\frac{\cos(z)}{\sin(z)},~ \sec(z)=\frac{1}{\cos(z)},~ \csc(z)=\frac{1}{\sin(z)}. \tag{5.4-1b}

實數時三角函數的 sin(x), cos(x)\sin(x),~\cos(x)的絕對值小於等於1,但在複數系內是否仍然成立?

範例5.4-1. 請問 sin(z)1|\sin(z)|\le 1zC\forall z\in\mathbb{C} 是否成立?

三角函數的性質說明如下:

性質

  1. 定義5.3-1
    ddzsin(z)=n=0(1)nddzz2n+1(2n+1)!=n=0(1)nz2n(2n)!=cos(z),ddzcos(z)=n=1(1)nddzz2n(2n)!=n=1(1)nz2n1(2n1)!=n=0(1)n+1z2n(2n)!=sin(z).\begin{align*} \frac{d}{dz}\sin(z) &= \sum_{n=0}^\infty (-1)^n \frac{d}{dz}\frac{z^{2n+1}}{(2n+1)!} =\sum_{n=0}^\infty (-1)^n \frac{z^{2n}}{(2n)!}=\cos(z), \\ \frac{d}{dz}\cos(z) &= \sum_{n=1}^\infty (-1)^n \frac{d}{dz}\frac{z^{2n}}{(2n)!} =\sum_{n=1}^\infty (-1)^n \frac{z^{2n-1}}{(2n-1)!} =\sum_{n=0}^\infty (-1)^{n+1} \frac{z^{2n}}{(2n)!} \\ &=-\sin(z). \end{align*}
  1. sin(z)=n=0(1)n(z)2n+1(2n+1)!=n=0(1)nz2n+1(2n+1)!=sin(z)\sin(-z) = \sum\limits_{n=0}^\infty (-1)^n \frac{(-z)^{2n+1}}{(2n+1)!}=\sum\limits_{n=0}^\infty (-1)^n \frac{-z^{2n+1}}{(2n+1)!}=-\sin(z)

    cos(z)=n=0(1)n(z)2n(2n)!=n=0(1)nz2n(2n)!=cos(z)\cos(-z) = \sum\limits_{n=0}^\infty (-1)^n \frac{(-z)^{2n}}{(2n)!}=\sum\limits_{n=0}^\infty (-1)^n \frac{z^{2n}}{(2n)!}=\cos(z)
  1. 由於 in={(1)ki,n=2k+1,(1)k,n=2k,i^n=\begin{cases} (-1)^k i, & n=2k+1, \\ (-1)^k, & n=2k,\end{cases},故

    eiz=n=0(iz)nn!=n=0inznn!=k=0(i)2kz2k(2k)!+k=0(i)2k+1z2k+1(2k+1)!=k=0(1)kz2k(2k)!+ik=0(1)kz2k+1(2k+1)!=cos(z)+isin(z),\begin{align*} e^{iz}&=\sum_{n=0}^\infty \frac{(iz)^n}{n!} =\sum_{n=0}^\infty \frac{i^n z^n}{n!} =\sum_{k=0}^\infty \frac{(i)^{2k} z^{2k}}{(2k)!} +\sum_{k=0}^\infty \frac{(i)^{2k+1} z^{2k+1}}{(2k+1)!} \\ &=\sum_{k=0}^\infty \frac{(-1)^{k} z^{2k}}{(2k)!} +i\sum_{k=0}^\infty \frac{(-1)^{k} z^{2k+1}}{(2k+1)!} = \cos(z)+i\sin(z), \end{align*}

    以及 eiz=cos(z)isin(z)e^{-iz}=\cos(z)-i\sin(z),因此

    cos(z)=eiz+eiz2,sin(z)=eizeiz2i.\cos(z)=\frac{e^{iz}+e^{-iz}}{2},\quad \sin(z)=\frac{e^{iz}-e^{-iz}}{2i}.
  1. 驗證實數的關係 sin2(x)+cos2(x)=1, xR\sin^2(x)+\cos^2(x)=1,~\forall x\in\R,在複數是否仍然成立。
    sin2(z)+cos2(z)=(eizeiz2i)2+(eiz+eiz2)2=14[(e2iz2+e2iz)+(e2iz+2+e2iz)]=1,\begin{align*} \sin^2(z)+\cos^2(z)&=\left(\frac{e^{iz}-e^{-iz}}{2i}\right)^2+\left(\frac{e^{iz}+e^{-iz}}{2}\right)^2 \\ &=\frac14\left[-(e^{2iz}-2+e^{-2iz})+(e^{2iz}+2+e^{-2iz})\right]=1, \end{align*}

    zC\forall z\in\mathbb{C},即此恆等式仍然成立。

  1. 驗證實數的關係 sin(x1+x2)=sin(x1)cos(x2)+cos(x1)sin(x2), x1, x2R\sin(x_1+x_2)=\sin(x_1)\cos(x_2)+\cos(x_1)\sin(x_2),~\forall x_1,~x_2\in\R,在複數是否仍然成立。由
    sin(z1+z2)=ei(z1+z2)ei(z1+z2)2i=eiz1eiz2eiz1eiz22i,\sin(z_1+z_2)=\frac{e^{i(z_1+z_2)}-e^{-i(z_1+z_2)}}{2i} =\frac{e^{i z_1}e^{iz_2}-e^{-iz_1}e^{-iz_2}}{2i},

    以及

    sin(z1)cos(z2)+cos(z1)sin(z2)=eiz1eiz12ieiz2+eiz22+eiz1+eiz12eiz2eiz22i=14i[eiz1eiz2eiz1eiz2+eiz1eiz2eiz1eiz2+eiz1eiz2+eiz1eiz2eiz1eiz2eiz1eiz2]=14i[eiz1eiz2eiz1eiz2+eiz1eiz2eiz1eiz2]=eiz1eiz2eiz1eiz22i\begin{align*} &\sin(z_1)\cos(z_2)+\cos(z_1)\sin(z_2) =\frac{e^{i z_1}-e^{-i z_1}}{2i} \frac{e^{i z_2}+e^{-i z_2}}{2} +\frac{e^{i z_1}+e^{-i z_1}}{2} \frac{e^{i z_2}-e^{-i z_2}}{2i}\\ &=\frac{1}{4i}\left[e^{i z_1}e^{i z_2}-e^{-i z_1}e^{i z_2}+ e^{i z_1}e^{-i z_2}-e^{-i z_1}e^{-i z_2} +e^{i z_1}e^{i z_2}+e^{-i z_1}e^{i z_2}-e^{i z_1}e^{-i z_2}-e^{-i z_1}e^{-i z_2} \right]\\ &=\frac{1}{4i}\left[e^{i z_1}e^{i z_2}-e^{-i z_1}e^{-i z_2} +e^{i z_1}e^{i z_2}-e^{-i z_1}e^{-i z_2} \right] =\frac{e^{i z_1}e^{i z_2}-e^{-i z_1}e^{-i z_2}}{2i} \end{align*}

    因此對任意的  z1, z2Cz_1,~z_2\in\mathbb{C},則有 sin(z1+z2)=sin(z1)cos(z2)+cos(z1)sin(z2)\sin(z_1+z_2)=\sin(z_1)\cos(z_2)+\cos(z_1)\sin(z_2);同理可得cos(z1+z2)=cos(z1)cos(z2)sin(z1)sin(z2)\cos(z_1+z_2)=\cos(z_1)\cos(z_2)-\sin(z_1)\sin(z_2)

  1. 週期性:由前項得知
    sin(z+2π)=sin(z)cos(2π)+cos(z)sin(2π)=sin(z),cos(z+2π)=cos(z)cos(2π)sin(z)sin(2π)=cos(z).\sin(z+2\pi)=\sin(z)\cos(2\pi)+\cos(z)\sin(2\pi)=\sin(z),\\ \cos(z+2\pi)=\cos(z)\cos(2\pi)-\sin(z)\sin(2\pi)=\cos(z).

    sin(z)\sin(z)cos(z)\cos(z) 均為週期等於 2π2\pi 之週期函數。同樣展可得對任意的 zCz\in\mathbb{C},下面關係成立:

    {sin(z+π)=sin(z),cos(z+π)=cos(z),{sin(z+π2)=cos(z),cos(z+π2)=sin(z).\begin{cases} \sin(z+\pi)=-\sin(z),\\ \cos(z+\pi)=-\cos(z), \end{cases}\quad \begin{cases} \sin(z+\frac{\pi}2)=\cos(z),\\ \cos(z+\frac{\pi}2)=-\sin(z). \end{cases}
  1. sin(z)=0    z=nπ,cos(z)=0    z=(n+12)π, nZ.\sin(z)=0\iff z=n\pi,\quad \cos(z)=0\iff z=(n+\frac12)\pi,~n\in\Z. 

這兩個基本三角函數的映射圖形如下:

雙曲函數

複數的雙曲函數定義如下:

定義5.4-2.zCz\in\mathbb{C}

sinh(z)=ezez2,cosh(z)=ez+ez2,(5.4-2a)\sinh(z)=\frac{e^z-e^{-z}}{2},\quad \cosh(z)=\frac{e^z+e^{-z}}{2}, \tag{5.4-2a}

以及

tanh(z)=sinh(z)cosh(z), coth(z)=cosh(z)sinh(z), sech(z)=1cosh(z), csch(z)=1sinh(z).(5.4-2b)\tanh(z)=\frac{\sinh(z)}{\cosh(z)},~ \coth(z)=\frac{\cosh(z)}{\sinh(z)},~ \text{sech}(z)=\frac{1}{\cosh(z)},~ \text{csch}(z)=\frac{1}{\sinh(z)}. \tag{5.4-2b}

雙曲函數的性質說明如下:

性質

z, z1, z2Cz,~z_1,~z_2\in\mathbb{C},下列性質成立:

  1. 導數計算如下:
    ddzsinh(z)=ez+ez2=cosh(z),ddzcosh(z)=ezez2=sinh(z).\frac{d}{dz}\sinh(z)=\frac{e^{z}+e^{-z}}{2}=\cosh(z),\quad \frac{d}{dz}\cosh(z)=\frac{e^{z}-e^{-z}}{2}=\sinh(z).
  1. sinh(z)=ezez2=sinh(z), cosh(z)=ez+ez2=cosh(z)\sinh(-z)=\frac{e^{-z}-e^{z}}{2}=-\sinh(z),~\cosh(-z)=\frac{e^{-z}+e^{z}}{2}=\cosh(z)
  1. cosh2(z)sinh2(z)=14[(e2z+2+e2z)(e2z2+e2z)]=1\cosh^2(z)-\sinh^2(z)=\frac14\left[(e^{2z}+2+e^{-2z})-(e^{2z}-2+e^{-2z})\right]=1
  1. sinh(z1+z2)=12(ez1ez2ez1ez2)\sinh(z_1+z_2)=\frac12(e^{z_1}e^{z_2}-e^{-z_1} e^{-z_2}),而
    sinh(z1)cosh(z2)+cosh(z1)sinh(z2)=ez1ez12ez2+ez22ez1+ez12ez2ez22=ez1ez2ez1ez2+ez1ez2ez1ez2+ez1ez2+ez1ez2ez1ez2ez1ez24=ez1ez2ez1ez22\begin{align*} \sinh(z_1)\cosh(z_2)+\cosh(z_1)\sinh(z_2) &=\frac{e^{z_1}-e^{-z_1}}{2}\frac{e^{z_2}+e^{-z_2}}{2} - \frac{e^{z_1}+e^{-z_1}}{2} \frac{e^{z_2}-e^{-z_2}}{2}\\ &=\frac{e^{z_1}e^{z_2}-\cancel{e^{-z_1}{e^{z_2}}}+e^{z_1}e^{-z_2}-\cancel{e^{-z_1}e^{-z_2}}+\cancel{e^{z_1}e^{z_2}}+e^{-z_1}e^{z_2}-\cancel{e^{z_1}e^{-z_2}}-e^{-z_1}e^{-z_2}}{4} \\ &=\frac{e^{z_1}e^{z_2}-e^{-z_1}e^{-z_2}}{2} \end{align*}

    因此 sinh(z1+z2)=sinh(z1)cosh(z2)+cosh(z1)sinh(z2)\sinh(z_1+z_2)=\sinh(z_1)\cosh(z_2)+\cosh(z_1)\sinh(z_2)

    同理可得 cosh(z1+z2)=cosh(z1)cosh(z2)+sinh(z1)sinh(z2)\cosh(z_1{\color{red}+}z_2)=\cosh(z_1)\cosh(z_2){\color{red}+}\sinh(z_1)\sinh(z_2)

  1. 週期性:由 ei2nπ=1, nZe^{i2n\pi}=1,~n\in\Z 可得
    sinh(z+2πi)=ezei2πezei2π2=ezez2=sinh(z),cosh(z+2πi)=ezei2π+ezei2π2=ez+ez2=cosh(z).\sinh(z+2\pi i)=\frac{e^{z}e^{i2\pi}-e^{-z}e^{-i2\pi}}{2} =\frac{e^{z}-e^{-z}}{2} =\sinh(z),\\ \cosh(z+2\pi i)=\frac{e^{z}e^{i2\pi}+e^{-z}e^{-i2\pi}}{2} =\frac{e^{z}+e^{-z}}{2}=\cosh(z).

    sinh(z)\sinh(z)cosh(z)\cosh(z) 均為週期等於 2πi2\pi i 之週期函數 (與 eze^{z}相同)。

這兩個基本雙曲函數的映射圖形如下:

三角函數和雙曲函數之關係

由於

sin(z)=eizeiz2i,cos(z)=eiz+eiz2,sinh(z)=ezez2,cosh(z)=ez+ez2,\sin(z)=\frac{e^{iz}-e^{-iz}}{2i},\quad \cos(z)=\frac{e^{iz}+e^{-iz}}{2}, \\ \sinh(z)=\frac{e^{z}-e^{-z}}{2},\quad \cosh(z)=\frac{e^{z}+e^{-z}}{2},

可得

cos(z)=cosh(iz),sin(z)=sinh(iz)i,cosh(z)=cos(iz),sinh(z)=isin(iz) (or sin(iz)=isinh(z)),\begin{align*} \cos(z)=\cosh(iz),\quad &\sin(z)=\frac{\sinh(iz)}{i},\\ \cosh(z)=\cos(iz),\quad &\sinh(z)=-i\sin(iz)~(\text{or~}\sin(iz)=i\sinh(z)), \tag{5.4-3} \end{align*}

此外,由

eiz=ey+ix=eycos(x)+ieysin(x),eiz=eyix=eycos(x)ieysin(x),e^{iz}=e^{-y+ix}=e^{-y}\cos(x) + i e^{-y}\sin(x), \\ e^{-iz}=e^{y-ix}=e^{y}\cos(x) - i e^{y}\sin(x),

sin(z)=eizeiz2i=cos(x)eyey2i+isin(x)ey+ey2i,cos(z)=eiz+eiz2=cos(x)ey+ey2+isin(x)eyey2,\sin(z)=\frac{e^{iz}-e^{-iz}}{2i} =\cos(x) \frac{e^{-y}-e^{y}}{2i} +i \sin(x)\frac{e^{-y}+e^{y}}{2i},\\ \cos(z)=\frac{e^{iz}+e^{-iz}}{2} =\cos(x) \frac{e^{-y}+e^{y}}{2} +i \sin(x)\frac{e^{-y}-e^{y}}{2},

sin(x+iy)=sin(x)cosh(y)+icos(x)sinh(y),cos(x+iy)=cos(x)cosh(y)isin(x)sinh(y),\sin(x+iy)=\sin(x)\cosh(y)+i\cos(x)\sinh(y), \\ \cos(x{\color{red}+}iy)=\cos(x)\cosh(y){\color{red}-}i\sin(x)\sinh(y),

另一種推導方式為使用 sin, cos\sin,~\cos 和差化積,再加上(5.4-3)式的關係可得,即

sin(x+iy)=sin(x)cos(iy)+cos(x)sin(iy)=sin(x)cosh(y)+icos(x)sinh(y),cos(x+iy)=cos(x)cos(iy)sin(x)sin(iy)=cos(x)cosh(y)isin(x)sinh(y)\sin(x+iy)=\sin(x)\cos(iy)+\cos(x)\sin(iy) =\sin(x)\cosh(y)+i\cos(x)\sinh(y),\\ \cos(x+iy)=\cos(x)\cos(iy)-\sin(x)\sin(iy) =\cos(x)\cosh(y)-i\sin(x)\sinh(y)

同理可得

sinh(x+iy)=isin(y+ix)=sinh(x)cos(y)+icosh(x)sin(y),cosh(x+iy)=cos(y+ix)=cosh(x)cos(y)+isinh(x)sin(y).\sinh(x+iy)=-i\sin(-y+ix)=\sinh(x)\cos(y)+i\cosh(x)\sin(y), \\ \cosh(x{\color{red}+}iy)=\cos(-y+ix)=\cosh(x)\cos(y){\color{red}+}i\sinh(x)\sin(y).

此外,由於

sin(x+iy)2=sin2(x)cosh2(y)+cos2(x)sinh2(y)=sin2(x)(cosh2(y)sinh2(y))+(sin2(x)+cos2(x))sinh2(y)=sin2(x)+sinh2(y),cos(x+iy)2=cos2(x)cosh2(y)+sin2(x)sinh2(y)=cos2(x)(cosh2(y)sinh2(y))+(sin2(x)+cos2(x))sinh2(y)=cos2(x)+sinh2(y)\begin{align*} |\sin(x+iy)|^2&=\sin^2(x)\cosh^2(y)+\cos^2(x)\sinh^2(y) =\sin^2(x)(\cosh^2(y)-\sinh^2(y))+(\sin^2(x)+\cos^2(x))\sinh^2(y)\\ &=\sin^2(x)+\sinh^2(y),\\ |\cos(x+iy)|^2&=\cos^2(x)\cosh^2(y)+\sin^2(x)\sinh^2(y) =\cos^2(x)(\cosh^2(y)-\sinh^2(y))+(\sin^2(x)+\cos^2(x))\sinh^2(y)\\ &=\cos^2(x)+\sinh^2(y)\\ \end{align*}

以及

sinh(x+iy)2=sinh2(x)+sin2(y),cosh(x+iy)2=sinh2(x)+cos2(y),\begin{align*} |\sinh(x+iy)|^2&=\sinh^2(x)+\sin^2(y),\\ |\cosh(x+iy)|^2&=\sinh^2(x)+\cos^2(y),\\ \end{align*}

由於 sinh(x), cosh(x)\sinh(x),~\cosh(x) 為無界函數,得知 sin(z), cos(z), sinh(z), cosh(z)\sin(z),~\cos(z),~\sinh(z),~\cosh(z) 為無界函數,不像在實數域時 sin(x), cos(x)\sin(x),~\cos(x) 的值均落在區間 [1,1][-1,1] 之內。