5.2 複數對數 (Complex Logarithm) log(z)\log(z)

此節定義複指數函數的反函數複指數對數

從上節例題5.1-2可定義 log(z)\log(z)如下:

定義5.2-1.z0, log(z)={wC:exp(w)=z}z\ne0,~\log(z)= \{w\in\Complex:\exp(w)=z\}

log(z)=lnz+iarg(z)=lnz+i(Arg(z)+2nπ),nZ,π<Arg(z)π.%\fcolorbox{a}{s}{$ \begin{align*} \log(z)&=\ln \left|z \right| +i\arg(z) \\ &=\ln \left|z \right| +i(\text{Arg}(z)+2n\pi),n\in \Z,-\pi\lt\text{Arg}(z)\le\pi. \end{align*} %$}。

舉例 log(1+3i)=ln1+3i+i(Arg(1+3i)+2nπ)=ln2+i(π3+2nπ),nZ\log(1+\sqrt3i)=\ln\left|1+\sqrt3i\right|+i(\text{Arg}(1+\sqrt3i)+2n\pi)=\ln2+i(\frac{\pi}{3}+2n\pi),n\in Z。因此 w=log(z)w=\log(z) 之充要條件為 ez=we^z=w

由於為一對多函數,定義對數函數的主值 (principal value) 函數如下:

定義5.2-2.z0, Log(z)=lnz+iArg(z)z\ne 0,~\text{Log}(z)=\ln \left|z \right|+i\text{Arg}(z)

如此可知

Log:S=C\{0}S0={w:π<Im(m)π}Log(z)=lnz+iArg(z)\begin{aligned} \text{Log}:S=\Complex \text{\textbackslash} \{0\}&\to S_0=\{w:-\pi\lt \text{Im}(m)\le\pi\} \\ &\mapsto \text{Log}(z)=\ln \left|z \right| +i\text{Arg}(z) \end{aligned}

例題5.2-1. (a) log(1+i)=ln1+i+iarg(1+i)=ln2+i(π4+2nπ),nZ(a)~\log(1+i)=\ln \left|1+i \right| +i\arg(1+i)=\ln\sqrt2+i(\frac{\pi}{4}+2n\pi),n\in\Z

Log(1+i)=ln2+iπ4\text{Log}(1+i)=\ln\sqrt2+i\frac{\pi}{4}

(b)  log(i)=lni+iarg(i)=ln1+i(π2+2nπ),nZ(b)~~\log(i)=\ln \left|i \right| +i\arg(i)=\ln 1+i(\frac{\pi}{2}+2n\pi),n\in\Z

Log(i)=iπ2\text{Log}(i)=i\frac{\pi}{2}

性質

  1. Log(e)=1, Log(e)=1+iπ\text{Log}(e)=1,~\text{Log}(-e)=1+i\pi

    Log(1)=0, Log(iπ)=iπ\text{Log}(1)=0,~\text{Log}(-i\pi)=i\pi

  1. exp(Log(z))=exp(lnz+iArg(z))=exp(lnz)exp(iArg(z))=zeiArg(z)=z,z0\begin{aligned} \exp(\text{Log}(z))&=\exp(\ln \left|z \right| +i\text{Arg}(z))=\exp(\ln \left|z \right|)\exp(i \text{Arg}(z))\\ &=\left|z \right|e^{i\text{Arg}(z)}=z,\forall z\ne 0 \end{aligned}

    z=x+iyz=x+i y,則有

    Log(exp(z))=lnexp(z)+iArg(exp(z))=lnex+iArg(eiy)=x+iy={z,π<yπ,z+i2nπ,π<y+2nππ.\begin{align*} \text{Log}(\exp(z))&=\ln \left|\exp(z) \right| +i\text{Arg}(\exp(z))=\ln e^x+i\text{Arg}(e^{iy})\\ &=x+iy= \begin{cases} z, &\pi\lt y\le\pi, \\ z+i2n\pi, &\pi\lt y+2n\pi\le\pi. \end{cases} \end{align*}

  1. z=x0R, Log(z)=lnx+iArg(x)=lnxz=x\ne 0\in \R,~\text{Log}(z)=\ln \left|x \right|+i\text{Arg}(x)=\ln\left|x \right|;即當 x>0x\gt 0 時,Log(x)=lnx\text{Log}(x)=\ln x ,可見 Log\text{Log} ln\lnC\Complex 上之擴延函數。若 x<0x<0 時, lnx\ln x 是無法定義,但從複數的角度,此時Log(x)=ln(x)+iπ\text{Log}(x)=\ln (-x)+i\pi ,是有定義的,是一個複數,實部是 lnx\ln |x|,而虛部為 iπi\pi
  1. z=reiθ,r>0 且 π<θπ, Log(z)=lnr+iθz=re^{i\theta},r\gt 0~\text{且}~-\pi\lt \theta \le\pi,~\text{Log}(z)=\ln r+i\theta
  1. ddzLog(z)=1z\displaystyle\frac{d}{dz}\text{Log}(z)=\frac{1}{z}
    • [證明]

      法1:exp(Log(z))=z\exp(\text{Log}(z))=z,對此方程兩側微分,得

      exp(Log(z))ddzLog(z)=1    zddzLog(z)=1    ddzLog(z)=1z \exp(\text{Log}(z))\cdot\displaystyle\frac{d}{dz}\text{Log}(z)=1 \implies z\cdot \frac{d}{dz}\text{Log}(z)=1 \implies \frac{d}{dz}\text{Log}(z)=\frac{1}{z}

      法2:w=Log(reiθ)=lnr+iθ  (π<θπ)U(r,θ)+iV(r,θ)w=\text{Log}(r e^{i\theta})=\ln r+i\theta\;(-\pi\lt \theta\le\pi)\triangleq U(r,\theta)+i V(r,\theta)

      因此U,~V,~滿足柯西黎曼方程是,以及 Ur, Uθ, Vr, VθU_r,~U_\theta,~V_r,~V_\theta 均為 SS 上之連續函數,由定理3.2-2Log\text{Log} 為可微,故

      ddzLog(z)=1eiθ(Ur+iVr)=1reiθ=1z.\displaystyle\frac{d}{dz}\text{Log}(z)=\frac{1}{e^{i\theta}}\left(\frac{\partial U}{\partial r}+i\frac{\partial V}{\partial r}\right)=\frac{1}{re^{i\theta}}=\frac{1}{z}.

例題5.2-2. 給定 z1=3+iz_1=-\sqrt3+iz2=1+i3z_2=-1+i\sqrt3,計算 Log(z1), Log(z2)\text{Log}(z_1),~\text{Log}(z_2)Log(z1z2)\text{Log}(z_1\cdot z_2) 之值。

此例結果與實數 lnx1+lnx2=ln(x1x2)\ln x_1 +\ln x_2=\ln(x_1 \cdot x_2) 的情形不相,因為主幅角的範圍 (同位角),如此可得

定理5.2-1.z10, z20, Log(z1z2)=Log(z1)+Log(z2)z_1\ne 0,~z_2\ne 0,~\text{Log}(z_1\cdot z_2)=\text{Log}(z_1)+\text{Log}(z_2) 之充要條件為

π<Arg(z1)+Arg(z2)π-\pi\lt\text{Arg}(z_1)+\text{Arg}(z_2)\le \pi

一般而言,複數對數函數 log\text{log} 之性質如下:

定理5.2-2.z10, z20z_1\ne 0,~z_2\ne 0,下列關係成立:

(1) log(z1z2)=log(z1)+log(z2)(1)~\log(z_1\cdot z_2)=\log(z_1)+\log(z_2)

(2) log(z1z2)=log(z1)log(z2)(2)~\log \left(\frac{z_1}{z_2}\right)=\log(z_1)-\log(z_2)

(3) log(1z)=logz(3)~\log \left(\frac{1}{z}\right)=-\log z

(4) ddzlog(z)=1z(4)~\displaystyle\frac{d}{dz}\log(z)=\frac{1}{z}

由於 w=logzw=\log z 為多值函數,因此要造其分支 (branch) 使其為單值函數(假設此分支切 (branch cut) 的角度為α\alpha)。例如 w=Log(z)w=\text{Log}(z) 即是從 S=C\{0}S=\Complex\text{\textbackslash}\{0\} 映射到 S0={w:π <Im(w)π}S_0=\{w:-\pi\ \lt \text{Im}(w) \le \pi\} 之單值函數,對應的分支切為 α=π\alpha=-\pi 。令 αR\alpha\in \R ,對值域為 Sα={w:α<Im(w)2π+α}S_\alpha=\{w:\alpha\lt\text{Im}(w)\le2\pi+\alpha\} 之函數圖形如下:

則函數 w=f(z)=logα(z)=lnz+i [Arg(z)+π+α]w=f(z)=\log_\alpha(z)=\ln\left| z\right|+i~[\text{Arg}(z)+\pi+\alpha] (注意 α<Arg(z)+π+αα+2π\alpha\lt \text{Arg}(z)+\pi+\alpha \le \alpha+2\pi) 為從 SSαS \to S_\alpha 之單值函數。對應的分支切為射線 {reiα:r>0}\{re^{i\alpha} :r \gt 0\} 為函數 ff 之不連續點所在;原點則為此函數之分支點 (branch point)。

若欲將值域從某個 Sn={w:2nππ <y2nπ+π}S_n=\{w:2n\pi-\pi\ \lt y\le2n\pi+\pi\} 擴張到整個複平面,則必須重疊多層的 SS 才成。令

RSk={reiθ:2kππ <θ2kπ+π , r>0}RS_k=\{re^{i\theta}:2k\pi-\pi\ \lt \theta \le2k\pi+\pi\ \text{,~} r \gt 0 \}

為螺旋薄片(Spiral sheet) ,則

f(RSk)={lnr+iθ=u+iv:2kππ <v2kπ+π}f(RS_k)=\{\ln r+i\theta=u+iv:2k\pi-\pi\ \lt v \le2k\pi+\pi\}

水平長條 (horizonal strip),如此可得黎曼曲面為 RS=R=RSkRS=\displaystyle\bigcup_{R=-\infty}^{\infty}RS_k ,且 f(RS)=Cf(RS)=\Complex。圖示說明如下: