- (d) ∗Log(z)=ln∣z∣+iArg (z), −π<Arg (z)≤π
Log[(1+i)4]=Log(−4)=ln∣−4∣+iArg(−4)=ln4+iπ
(h) ∗log(z)=ln∣z∣+iarg(z)
log(−3−i)=ln∣−3−i∣+iarg(−3−i)
=ln2+i(−65π+2nπ), n∈Z
=ln2+i(−65+2n)π, n∈Z
3. (b) Log(z−1)=ln∣z−1∣+iArg(z−1)=i2π
{ln∣z−1∣=0⇒∣z−1∣=1Arg (z)=2π
Let z=x+iy
{∣(x−1)+iy∣=1⇒(x−1)2+y2=1⇒y2=1⇒y±1(負不合)Arg [(x−1)+iy]=2π⇒x−1=0⇒x=1
∴z=1+i
(d) ez+1=i⇒log(i)=z+1
Let z=x+iy
log(i)=(x+1)+iy
⇒ln∣i∣+iarg(i)=i(2π+2nπ), n∈Z
{x+1=0⇒x=−1y=2π+2nπ,n∈Z
∴z=−1+i(2π+2nπ),n∈Z
- ∗logα(z)=lnr+iθ, α<θ≤α+2π
(b) z0=−1+i3
⇒r=2, θ=32π
∴α=32π+2kπ, k∈Z
(d) z0=−i
⇒r=1, θ=−2π
∴α=−2π+2kπ, k∈Z
- f(z) is analytic everywhere except −1, −2.
( ∵z2+3z+2=(z+1)(z+2) )
The composite function Log(g(z)), where g(z)=z+5=x+5,
is analytic except at those points where g(z)=0,
or where z lies on the negative real axis, {(x,y):x≤−5,y=0}.
9. By logα(z)=ln∣z∣+iθ, α<θ≤α+2π
Let α=6π
f(−5)=log6π(−1)=ln1+i(7π)=7πi
- (b) Let C={z=2eiθ:−2π≤θ≤2π}
D={(ln2,v):−2π≤v≤2π}
∗ Log(z)=ln∣z∣+iArg (z)
∵z=2eiθ, −2π≤θ≤2π⇒∣z∣=2, Arg (z)=θ
∴Log(z)=Log(2eiθ)=ln2+iθ, −2π≤θ≤2π
1。 1-1
Assume Log(z1)=Log(z2), for z1, z2∈C
i.e. z1=2eiθ1, z2=2eiθ2, −2π≤θ≤2π
⇒ln2+iθ1=ln2+iθ2
⇒θ1=θ2
⇒z1=z2
∴Log(z) is 1-1 from C to D.
2。 onto
∀ w∈D⇒∃ v such that w=ln2+iv, −2π≤θ≤2π
⇒∀ z=2eiv, Log(z)=ln∣z∣+iArg (z)
=ln2+iv=w
∴∀ w∈D, ∃ z∈C such that Log(z)=w.
∴Log(z) is onto from C to D.