- ez=ex+iy=ex(cosy+isiny)
(c) z=−4+5i (i.e. z=−4+5i)
e−4+5i=e−4(cos5+isin5)
≈0.00519147−i0.0175623
(e) z=1+i45π
e1+i45π=e(cos45π+isin45π)
=e(−22−i22)
- ez=ex+iy=ex(cosy+isiny)
(a) e^z=-4
{excosy=−4exsiny=0⇒{ex=4, x=ln4siny=0, y=(2n+1)π, n∈Z
∴z=ln4+i(2n+1)π, n∈Z
(c) ez=3−i
{excosy=3−−(a)exsiny=−1−−(b)
(a)2+(b)2⇒e2x=4⇒ex=2, x=ln2
∴cosy=23,siny=−21, y=−6π+2nπ, n∈Z
∴z=ln2+i(−6π+2nπ), n∈Z
- Prove ∣ez2∣≤e∣z∣2 for all z∈C.
Let z=x+iy
∣ez2∣=∣ex2−y2+i2xy∣=∣ex2−y2∣∣ei2xy∣=∣ex2−y2∣≤∣x2+y2∣=e∣z∣2
∴∣ez2∣≤e∣z∣2
“=” y=0, 則等式成立
8. 1。 ez2=ex2−y2+i2xy=ex2−y2(cos2xy+isin2xy)
∴u(x,y)=ex2−y2cos2xy, v(x,y)=ex2−y2sin2xy
2。 ez1=ex+iy1=ex2+y2x−iy=ex2+y2x⋅ei(x2+y2−y)
∴u(x,y)=ex2+y2xcos(x2+y2−y)=ex2+y2xcos(x2+y2y)
v(x,y)=ex2+y2xsin(x2+y2−y)=−ex2+y2xsin(x2+y2y)
- (b) by L’Hoˆspital: limz→iπz−iπez+1=limz→iπ1ez=eiπ=−1
13. (b) dzd(z4ez3)=4z3ez3+z4⋅3z2ez3=ez3(4z3+3z6)
(d) dzd(ez1)=−z21ez1
- (a) n∈N,(ez)n=enz
Let z=x+iy
(ez)n=(ex+iy)n=(ex(cosy+isiny))n
=enx(cosy+isiny)n
=enx(cosny+isinny)
=enx⋅einy
=enx+iny
=en(x+iy)
=enz
- Σn=0∞einz converges for Im(z)>0
Σn=0∞einz=Σn=0∞(eiz)n if converges ∣eiz∣<1
Let z=x+iy, Im(z)>0⇒y>0, ey>1⇒e−y<1
∣e−y∣∣eix∣=∣e−y+ix∣=∣ei(x+iy)∣=∣eiz∣<1
18. (a) f(z)=ez
{(x,y):x=t,y=2π+t}, t∈R
Let z=x+iy
f(z)=ex+iy=ex(cosy+isiny)
=et(cos2π+t+isin2π+t)
=et(cost+isint)=u+iv
u=etcost,v=etsint
(b) {(x,y):x=2,y=t}
f(z)=ex+iy=ex(cosy+isiny)=e2(cost+isint), 6π<t<67π
(c) {(x,y):x>0,y=3π}
f(z)=ex+iy=ex(cosy+isiny)=ex(cos3π+isin3π)