4.3 參考解答

  1. Σn=0(z+i)n2n{converges D2(i)={z:z+i<2}diverges z+i>2\Sigma_{n=0}^{\infty} \frac{(z+i)^n}{2^n} \begin{cases} \text{converges}\space D_2(-i)=\{z: |z+i|<2 \} \\ \text{diverges}\space |z+i|>2\end{cases}

    limn(z+i)n+12n+1×2n(z+i)n=limnz+i2=z+i2\lim_{n \to \infty} |\frac{(z+i)^{n+1}}{2^{n+1}} \times \frac{2^n}{(z+i)^n}|=\lim_{n \to \infty} |\frac{z+i}{2}|=|\frac{z+i}{2}|

    if z+i2<1z+i<2Σn=0(z+i)n2n|\frac{z+i}{2}|<1 \Rightarrow |z+i|<2 \Rightarrow \Sigma_{n=0}^{\infty} \frac{(z+i)^n}{2^n} is convergent. (by Ratio Test)

    if z+i2>1z+i>2Σn=0(z+i)n2n|\frac{z+i}{2}|>1 \Rightarrow |z+i|>2 \Rightarrow \Sigma_{n=0}^{\infty} \frac{(z+i)^n}{2^n} is divergent.

4. (a) Σn=0(1+i2)n\Sigma_{n=0}^{\infty} (\frac{1+i}{2})^n is convergent (by Ratio Test)

limn(1+i2)n+1×(21+i)n=limn1+i2=22<1\lim_{n \to \infty} |(\frac{1+i}{2})^{n+1} \times (\frac{2}{1+i})^n|=\lim_{n \to \infty} |\frac{1+i}{2}|=\frac{\sqrt{2}}{2}<1

(c) Σn=1(1+i)nn!\Sigma_{n=1}^{\infty} \frac{(1+i)^n}{n!} is convergent (by Ratio Test)

limn(1+i)n+1(n+1)!×n!(1+i)n=limn1+in+1=limn2n+1=0<1\lim_{n \to \infty} |\frac{(1+i)^{n+1}}{(n+1)!} \times \frac{n!}{(1+i)^n}|=\lim_{n \to \infty} |\frac{1+i}{n+1}|=\lim_{n \to \infty} \frac{\sqrt{2}}{n+1}=0<1

  1. (a) Σn=0(1+i)nzn\Sigma_{n=0}^{\infty} (1+i)^nz^n is convergent on D12(0)D_{\frac{1}{\sqrt{2}}}(0)

    limnzn+1(1+i)n+1zn(1+i)n=limnz(1+i)=2z\lim_{n \to \infty} |\frac{z^{n+1}(1+i)^{n+1}}{z^n(1+i)^n}|=\lim_{n \to \infty} |z(1+i)|=\sqrt{2}|z|

    2z<1z<12\sqrt{2}|z|<1 \Rightarrow |z|<\frac{1}{\sqrt{2}}

    (c) Σn=0(zi)n(3+4i)n\Sigma_{n=0}^{\infty} \frac{(z-i)^n}{(3+4i)^n} is convergent D5(i)D_5(i)

    limn(zi)n+1(3+4i)n+1×(3+4i)n(zi)n=limnzi3+4i=zi5\lim_{n \to \infty} |\frac{(z-i)^{n+1}}{(3+4i)^{n+1}} \times \frac{(3+4i)^n}{(z-i)^n}|=\lim_{n \to \infty} |\frac{z-i}{3+4i}|=\frac{|z-i|}{5}

    zi5<1zi<5\frac{|z-i|}{5}<1 \Rightarrow |z-i|<5

12. (a) z=reiθ z=re^{i\theta}, z=r<1|z|=r<1

By geometric series, Σn=0zn=11z\Sigma_{n=0}^{\infty} z^n=\frac{1}{1-z}

Σn=0zn=Σn=0(reiθ)n=Σn=0rneinθ\Sigma_{n=0}^{\infty} z^n=\Sigma_{n=0}^{\infty} (re^{i\theta})^n=\Sigma_{n=0}^{\infty} r^n e^{in\theta}

=11(rcosθ+irsinθ)×(1rcosθ)+irsinθ(1rcosθ)+irsinθ=\frac{1}{1-(r\cos{\theta}+ir\sin{\theta})} \times \frac{(1-r\cos{\theta})+ir\sin{\theta}}{(1-r\cos{\theta})+ir\sin{\theta}}

=1rcosθ+irsinθ1+r22rcosθ=\frac{1-r\cos{\theta}+ir\sin{\theta}}{1+r^2-2r\cos{\theta}}

(b) Σn=0zn=Σn=0(reiθ)n=Σn=0rneinθ\because \Sigma_{n=0}^{\infty} z^n=\Sigma_{n=0}^{\infty} (re^{i\theta})^n=\Sigma_{n=0}^{\infty} r^n e^{in\theta}

=Σn=0rn(cosnθ+isinnθ)=Σn=0(rncosnθ+irnsinnθ) =\Sigma_{n=0}^{\infty} r^n(\cos{n\theta}+i\sin{n\theta})=\Sigma_{n=0}^{\infty} (r^n\cos{n\theta}+ir^n\sin{n\theta})

1rcosθ+irsinθ1+r22rcosθ=1rcosθ1+r22rcosθ+irsinθ1+r22rcosθ\therefore \frac{1-r\cos{\theta}+ir\sin{\theta}}{1+r^2-2r\cos{\theta}}=\frac{1-r\cos{\theta}}{1+r^2-2r\cos{\theta}}+i\frac{r\sin{\theta}}{1+r^2-2r\cos{\theta}}

Thus, Σn=0rncosnθ=1rcosθ1+r22rcosθ\Sigma_{n=0}^{\infty} r^n\cos{n\theta}=\frac{1-r\cos{\theta}}{1+r^2-2r\cos{\theta}}  and Σn=0rnsinnθ=rsinθ1+r22rcosθ\Sigma_{n=0}^{\infty} r^n\sin{n\theta}=\frac{r\sin{\theta}}{1+r^2-2r\cos{\theta}}.