- Σn=0∞2n(z+i)n{converges D2(−i)={z:∣z+i∣<2}diverges ∣z+i∣>2
limn→∞∣2n+1(z+i)n+1×(z+i)n2n∣=limn→∞∣2z+i∣=∣2z+i∣
if ∣2z+i∣<1⇒∣z+i∣<2⇒Σn=0∞2n(z+i)n is convergent. (by Ratio Test)
if ∣2z+i∣>1⇒∣z+i∣>2⇒Σn=0∞2n(z+i)n is divergent.
4. (a) Σn=0∞(21+i)n is convergent (by Ratio Test)
limn→∞∣(21+i)n+1×(1+i2)n∣=limn→∞∣21+i∣=22<1
(c) Σn=1∞n!(1+i)n is convergent (by Ratio Test)
limn→∞∣(n+1)!(1+i)n+1×(1+i)nn!∣=limn→∞∣n+11+i∣=limn→∞n+12=0<1
- (a) Σn=0∞(1+i)nzn is convergent on D21(0)
limn→∞∣zn(1+i)nzn+1(1+i)n+1∣=limn→∞∣z(1+i)∣=2∣z∣
2∣z∣<1⇒∣z∣<21
(c) Σn=0∞(3+4i)n(z−i)n is convergent D5(i)
limn→∞∣(3+4i)n+1(z−i)n+1×(z−i)n(3+4i)n∣=limn→∞∣3+4iz−i∣=5∣z−i∣
5∣z−i∣<1⇒∣z−i∣<5
12. (a) z=reiθ, ∣z∣=r<1
By geometric series, Σn=0∞zn=1−z1
Σn=0∞zn=Σn=0∞(reiθ)n=Σn=0∞rneinθ
=1−(rcosθ+irsinθ)1×(1−rcosθ)+irsinθ(1−rcosθ)+irsinθ
=1+r2−2rcosθ1−rcosθ+irsinθ
(b) ∵Σn=0∞zn=Σn=0∞(reiθ)n=Σn=0∞rneinθ
=Σn=0∞rn(cosnθ+isinnθ)=Σn=0∞(rncosnθ+irnsinnθ)
∴1+r2−2rcosθ1−rcosθ+irsinθ=1+r2−2rcosθ1−rcosθ+i1+r2−2rcosθrsinθ
Thus, Σn=0∞rncosnθ=1+r2−2rcosθ1−rcosθ and Σn=0∞rnsinnθ=1+r2−2rcosθrsinθ.