- limn→∞zn=z0, limn→∞zn=z0
By ∀ ε, ∃Nε>0 such that n>Nε, ∣zn−z0∣<ε
∴∀ ε, ∃ N=Nε such that ∀ n>N, ∣zn−z0∣=∣zn−z0∣=∣zn−z0∣<ε
∴limn→∞zn=z0
5. Σn=0∞(n+1+i1−n+i1)=i
Σn=0k(n+1+i1−n+i1)=(1+i1−i1)+(2+i1−1+i1)+(3+i1−2+i1)
+⋯+(k+i1−k−1+i1)+(k+1+i1−k+i1)
=k+1+i1−i1
limk→∞Σn=0k(n+1+i1−n+i1)=limk→∞(k+1+i1−i1)=i
- (a) Σn=1∞n(i)n=i+2−1+3−i+41+5i+6−1+7−i+81+⋯
=(−21+41−61+81+−⋯)+i(1−31+51−71+−⋯)
=Σn=1∞2n(−1)n+iΣn=0∞2n+1(−1)n
Σn=1∞2n(−1)n: 1。 by alternatintest 2。 limn→∞2n1=0 : converges
同理 Σn=0∞2n+1(−1)n is also convergent.
∴Σn=1∞n(i)n converges.
(b) Σn=1∞(n1+2ni)⟶ diverges
Let xn=n1, yn=2ni
Σn=1∞xn=Σn=1∞n1 is divergent. (by p-series)
12. ∣Σn=0kzn∣=∣z0+z1+z2+⋯+zk∣
≤∣z0∣+∣z1∣+∣z2∣+⋯+∣zk∣=Σn=0k∣zn∣
Let Sk=Σn=0kzn & Σn=0∞zn is convergent to S.
∴limk→∞Sk=S, ∀ ε>0, ∃ N=Nε∈N such that ∀ k>N, ∣Sk−S∣<ε.
目標:limk→∞∣Sk∣=∣S∣s
∀ ε>0, ∃ N=Nε∈N such that ∀ k>N,∣∣Sk∣−∣S∣∣≤∣Sk−S∣<ε
⇒limk→∞∣Sk∣=∣S∣
⇒∣Σn=0∞zn∣=limk→∞∣Σn=0kzn∣≤limk→∞Σn=0k∣zn∣=Σn=0∞∣zn∣.