4.1 參考解答

  1. limnzn=z0\lim_{n \to \infty} z_n=z_0, limnzn=z0\lim_{n \to \infty} \overline{z_n}=\overline{z_0}

    By  ε\forall \space \varepsilon, Nε>0\exist N_\varepsilon>0 such that n>Nεn>N_\varepsilon, znz0<ε|z_n-z_0|<\varepsilon

     ε\therefore \forall \space \varepsilon,  N=Nε\exist \space N=N_\varepsilon such that  n>N\forall \space n>N, znz0=znz0=znz0<ε|\overline{z_n}-\overline{z_0}|=|\overline{z_n-z_0}|=|z_n-z_0|<\varepsilon

    limnzn=z0\therefore \lim_{n \to \infty} \overline{z_n}=\overline{z_0}

5. Σn=0(1n+1+i1n+i)=i\Sigma_{n=0}^{\infty} (\frac{1}{n+1+i}-\frac{1}{n+i})=i

Σn=0k(1n+1+i1n+i)=(11+i1i)+(12+i11+i)+(13+i12+i)\Sigma_{n=0}^{k} (\frac{1}{n+1+i}-\frac{1}{n+i})=(\frac{1}{1+i}-\frac{1}{i})+(\frac{1}{2+i}-\frac{1}{1+i})+(\frac{1}{3+i}-\frac{1}{2+i})

++(1k+i1k1+i)+(1k+1+i1k+i)+ \cdots +(\frac{1}{k+i}-\frac{1}{k-1+i})+(\frac{1}{k+1+i}-\frac{1}{k+i})

=1k+1+i1i=\frac{1}{k+1+i}-\frac{1}{i}

limkΣn=0k(1n+1+i1n+i)=limk(1k+1+i1i)=i\lim_{k \to \infty} \Sigma_{n=0}^{k} (\frac{1}{n+1+i}-\frac{1}{n+i})=\lim_{k \to \infty} (\frac{1}{k+1+i}-\frac{1}{i})=i

  1. (a) Σn=1(i)nn=i+12+i3+14+i5+16+i7+18+\Sigma_{n=1}^{\infty} \frac{(i)^n}{n}=i+\frac{-1}{2}+\frac{-i}{3}+\frac{1}{4}+\frac{i}{5}+\frac{-1}{6}+\frac{-i}{7}+\frac{1}{8}+\cdots

    =(12+1416+18+)+i(113+1517+)=(-\frac{1}{2}+\frac{1}{4}-\frac{1}{6}+\frac{1}{8}+-\cdots)+i(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+-\cdots)

    =Σn=1(1)n2n+iΣn=0(1)n2n+1=\Sigma_{n=1}^{\infty} \frac{(-1)^n}{2n}+i\Sigma_{n=0}^{\infty} \frac{(-1)^n}{2n+1}

    Σn=1(1)n2n\Sigma_{n=1}^{\infty} \frac{(-1)^n}{2n}: 11^。 by alternatintest 22^。 limn12n=0\lim_{n \to \infty} \frac{1}{2n}=0 : converges

    同理 Σn=0(1)n2n+1\Sigma_{n=0}^{\infty} \frac{(-1)^n}{2n+1} is also convergent.

    Σn=1(i)nn\therefore \Sigma_{n=1}^{\infty} \frac{(i)^n}{n} converges.

    (b) Σn=1(1n+i2n)\Sigma_{n=1}^{\infty} (\frac{1}{n}+\frac{i}{2^n}) \longrightarrow diverges

    Let xn=1nx_n=\frac{1}{n}, yn=i2ny_n=\frac{i}{2^n}

    Σn=1xn=Σn=11n\Sigma_{n=1}^{\infty} x_n=\Sigma_{n=1}^{\infty} \frac{1}{n} is divergent. (by pp-series)

12. Σn=0kzn=z0+z1+z2++zk|\Sigma_{n=0}^{k} z_n|=|z_0+z_1+z_2+\cdots +z_k|

z0+z1+z2++zk=Σn=0kzn\leq |z_0|+|z_1|+|z_2|+\cdots+|z_k|=\Sigma_{n=0}^{k} |z_n|

Let Sk=Σn=0kznS_k=\Sigma_{n=0}^{k} z_n & Σn=0zn\Sigma_{n=0}^{\infty} z_n is convergent to SS.

limkSk=S\therefore \lim_{k \to \infty} S_k=S,  ε>0\forall \space \varepsilon>0,  N=NεN\exist\space N=N_\varepsilon \in \mathbb{N} such that  k>N\forall \space k >N, SkS<ε|S_k-S|<\varepsilon.

目標:limkSk=S\lim_{k \to \infty} |S_k|=|S|s

 ε>0\forall \space \varepsilon>0,  N=NεN\exist\space N=N_\varepsilon \in \mathbb{N} such that  k>N\forall \space k >N,SkSSkS<ε||S_k|-|S|| \leq |S_k-S|<\varepsilon

limkSk=S\Rightarrow \lim_{k \to \infty} |S_k|=|S|

Σn=0zn=limkΣn=0kznlimkΣn=0kzn=Σn=0zn\Rightarrow |\Sigma_{n=0}^{\infty} z_n|=\lim_{k \to \infty} |\Sigma_{n=0}^{k} z_n| \leq \lim_{k \to \infty} \Sigma_{n=0}^{k} |z_n|=\Sigma_{n=0}^{\infty} |z_n|.