3.3 調和函數 (Harmonic Function)

卡氏座標表示法

ϕ(x,y)\phi(x,y) 為定義在域(開連通集) DD 上之實函數,定義拉氏方程 (Laplace equation) 或稱為位勢方程 (potential equation) 為

Δϕ=ϕxx(x,y)+ϕyy(x,y)=0\Delta \phi=\phi_{xx}(x,y)+\phi_{yy}(x,y)=0

其中 Δ=2x2+2y2\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2} 稱為拉氏算子(Laplace operator)。定義調和函數 (harmonic function) 如下:

定義3.3-1. 若實函數 ϕ(x,y)\phi(x,y) 在域 DD 上滿足:

(1) ϕ, ϕx, ϕy, ϕxx, ϕxy, ϕyy為 D 上之連續函數,(2) Δϕ=0, (x,y)D,\begin{aligned}&(1)~\phi,~\phi_{x},~\phi_{y},~\phi_{xx},~\phi_{xy},~\phi_{yy}\text{為}~D~\text{上之連續函數},\\ &(2)~\Delta \phi=0,~\forall(x,y)\in D, \end{aligned}

則稱 ϕ(x,y)\phi(x,y) DD 上之調和函數,並以 H(D)H(D) 表示定義在 DD 上的調和函數所形成的集合。

調和函數(實函數)和解析函數(複函數)之關係說明如下:

定理3.3-1. f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)DD 上解析,則 uuvv 均為調和函數。

uuDD 上之調和函數。若  v\exists~v 使 CRE 成立,則 vv 稱為 uu調和共軛 (harmonic conjugate)f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)DD 上是解析。反之,若先給定 vv 為調和,則因

(i)f(z)=v(x,y)iu(x,y)(-i)f(z) = v(x,y)-i u(x,y)

(i)f(z)(-i)f(z) 為解析函數,則 u-uvv 之調和共軛。

例題3.3-1. 驗證 u(x,y)=x2y2u(x,y)=x^2-y^2 為調和,並求其調和共軛 vv

例題3.3-1 的函數 uuvv,可以組合得 f(z)=x2y2+i(2xy+k)f(z)=x^2-y^2+i(2xy+k)C\Complex 上之解析函數。此外這兩者形成正交曲線族。

一般而言,若 u,vu,v 均為調和,則 uvu\cdot v 不一定是調和。例如,u(x,y)=x2y2,v(x,y)=x33xy2u(x,y)=x^2-y^2,v(x,y)=x^3-3xy^2 (請自行驗證 Δu=Δv=0\Delta u=\Delta v=0),令 w(x,y)=u(x,y)v(x,y)=x54x3y2+3xy4w(x,y)=u(x,y)\cdot v(x,y)=x^5-4x^3y^2+3xy^4 ,則

{wx=5x412x2y2+3y4wy=8x3y+12xy3    {wxx=20x324xy2wyy=8x3+36xy2\begin{cases} w_x=5x^4-12x^2y^2+3y^4 \\w_y=-8x^3y+12xy^3 &\end{cases} \implies \begin{cases} w_{xx}=20x^3-24xy^2\\w_{yy}=-8x^3+36xy^2 &\end{cases}

因此, Δw=12x(x2+y2)\Delta w=12x(x^2+y^2);除 yy 軸外,Δw0\Delta w\ne0,即 wwyy 軸外之區域是非調和的。

但試問在何種條件下,兩個調和函數相乘仍為調和呢?設 vvuu 之調和共軛,則

f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y)

為解析,因

[f(z)]2=[u(x,y)+iv(x,y)]2=u(x,y)2v(x,y)2+i2u(x,y)v(x,y)\big[f(z)\big]^2=[u(x,y)+iv(x,y)]^2=u(x,y)^2-v(x,y)^2+i2u(x,y)v(x,y)

因此當且 [f(z)]2\big[f(z)\big]^2 亦為解析時,其虛部 u(x,y)v(x,y)u(x,y)\cdot v(x,y) 亦為調和。換句話說,若 vvuu 為調和共軛,則 uvu\cdot v 亦為調和函數。

例題3.3-2. 已知 v(x,y)=xy3x3yv(x,y)=xy^3-x^3y 為調和函數,求其調和共軛 uu 使 u+ivu+iv 為解析。

u(x,y)=14(x46x2y2+y4)+k,kR.u(x,y)=-\frac{1}{4}(x^4-6x^2y^2+y^4)+k,\quad k\in \R.

由此例可知下列函數亦為解析 :

f(z)=f(x+iy)=14(x46x2y2+y4)+k+ixy(y2x2),kR.f(z)=f(x+iy)=-\frac{1}{4}(x^4-6x^2y^2+y^4)+k+ixy(y^2-x^2),\quad k\in \R.

極座標表示法

由於 z=x+iy=reiθz=x+iy=re^{i\theta} ,因此卡式座標和極座標之間的關係式為

{x=rcosθy=rsinθ或  {r2=x2+y2θ=tan1yx\begin{aligned} &\begin{cases} x=r\cos \theta\\y=r\sin \theta &\end{cases} \end{aligned} \text{或}~~ \begin{aligned} &\begin{cases} r^2=x^2+y^2 \\ \theta=\tan^{-1}{}\frac{y}{x} &\end{cases} \end{aligned}

xr2=x(x2+y2)    2rrx=2x    rx=cosθ\frac{\partial}{\partial x}r^2=\frac{\partial}{\partial x}(x^2+y^2) \implies 2r\frac{\partial r}{\partial x}=2x \implies \frac{\partial r}{\partial x}=\cos\theta

同理 ry=sinθ\frac{\partial r}{\partial y}=\sin\theta,再由

θx=xtan1yx=11+(yx)2x(yx)=x2x2+y2(yx2)=yx2+y2=1rsinθ\frac{\partial \theta}{\partial x} = \frac{\partial}{\partial x} \tan ^{-1}\frac{y}{x} =\frac{1}{1+\left(\frac{y}{x}\right)^2} \frac{\partial }{\partial x} \left(\frac{y}{x}\right) =\frac{x^2}{x^2+y^2} \left(-\frac{y}{x^2}\right) =-\frac{y}{x^2+y^2}=-\frac{1}{r}\sin\theta

同理 θy=1rcosθ\frac{\partial \theta}{\partial y}=\frac{1}{r}\cos\theta。因此對給定實函數 ϕ(x,y)=ϕ(r,θ)\phi(x,y)=\phi(r,\theta),則利用連鎖律可得

{ϕx=rxϕr+θxϕθ=cosθ  ϕrsinθ  1rϕθϕy=ryϕr+θyϕθ=sinθ  ϕr+cosθ  1rϕθ\begin{cases} \displaystyle \frac{\partial \phi}{\partial x} =\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial r}+\frac{\partial \theta}{\partial x}\frac{\partial \phi}{\partial \theta} =\cos\theta\;\frac{\partial \phi}{\partial r}-\sin\theta\;\frac{1}{r}\frac{\partial \phi}{\partial \theta}\\ \\ \displaystyle\frac{\partial \phi}{\partial y} =\frac{\partial r}{\partial y}\frac{\partial \phi}{\partial r}+\frac{\partial \theta}{\partial y}\frac{\partial \phi}{\partial \theta}=\sin\theta\;\frac{\partial \phi}{\partial r}+\cos\theta\;\frac{1}{r}\frac{\partial \phi}{\partial \theta} \end{cases}

換句話說,兩個座標系下梯度 (gradient) 向量間之關係如下:

(ϕxϕy)=[cosθsinθsinθcosθ](ϕr1rϕθ)\begin{pmatrix} \frac{\partial \phi}{\partial x}\\ \\ \frac{\partial \phi}{\partial y}\\ \end{pmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\\ \end{bmatrix} \begin{pmatrix} \frac{\partial \phi}{\partial r}\\ \\ \frac{1}{r}\frac{\partial \phi}{\partial \theta}\\ \end{pmatrix}

進一步,可推導二階函數,先計算整理得

r(ϕx)=r(cosθϕrsinθ1rϕθ)=cosθ2ϕr2+sinθ1r2ϕθsinθ1r2ϕθrθ(ϕx)=θ(cosθϕrsinθ1rϕθ)=sinθϕr+cosθ2ϕrθcosθ1rϕθsinθ1r2ϕθ2\begin{align*} \frac{\partial}{\partial r}\left(\frac{\partial \phi}{\partial x}\right) &=\frac{\partial}{\partial r} \left(\cos\theta\frac{\partial \phi}{\partial r}-\sin\theta\frac1{r}\frac{\partial\phi}{\partial \theta}\right) =\cos\theta \frac{\partial^2\phi}{\partial r^2}+\sin\theta\frac{1}{r^2}\frac{\partial \phi}{\partial \theta}-\sin\theta\frac1{r}\frac{\partial^2 \phi}{\partial\theta\partial r} \\ \frac{\partial}{\partial \theta}\left(\frac{\partial \phi}{\partial x}\right) &=\frac{\partial}{\partial \theta} \left(\cos\theta\frac{\partial \phi}{\partial r}-\sin\theta\frac1{r}\frac{\partial\phi}{\partial \theta}\right) =-\sin\theta \frac{\partial\phi}{\partial r}+\cos\theta \frac{\partial^2\phi}{\partial r\partial \theta}-\cos\theta\frac{1}{r}\frac{\partial \phi}{\partial \theta}-\sin\theta\frac1{r}\frac{\partial^2 \phi}{\partial\theta^2} \end{align*}

因此

2ϕx2=x(ϕx)=cosθr(ϕx)sinθ1rθ(ϕx)=cos2θ2ϕr2+cosθsinθ1r2ϕθcosθsinθ1r2ϕθrsin2θ1rϕrsinθcosθ1r2ϕrθ+sinθcosθ1r2ϕθ+sin2θ1r22ϕθ2\begin{align*} \frac{\partial^2 \phi}{\partial x^2} =\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial x}\right) &=\cos\theta \frac{\partial}{\partial r}\left(\frac{\partial \phi}{\partial x}\right) -\sin\theta\frac{1}{r} \frac{\partial}{\partial \theta}\left(\frac{\partial \phi}{\partial x}\right) \\ &=\cos^2\theta\frac{\partial^2 \phi}{\partial r^2}+\cos\theta\sin\theta\frac{1}{r^2}\frac{\partial \phi}{\partial \theta}-\cos\theta\sin\theta\frac{1}{r}\frac{\partial^2 \phi}{\partial \theta\partial r}\\ &\quad -\sin^2\theta \frac{1}{r}\frac{\partial\phi}{\partial r}-\sin\theta\cos\theta\frac{1}{r} \frac{\partial^2\phi}{\partial r\partial \theta}+\sin\theta\cos\theta\frac{1}{r^2}\frac{\partial \phi}{\partial \theta}+\sin^2\theta\frac1{r^2}\frac{\partial^2 \phi}{\partial\theta^2} \end{align*}

整理得

2ϕx2=cos2θ 2ϕr22sinθcosθ 1r2ϕrθ+sin2θ 1r22ϕθ2+sin2θ 1rϕr+2sinθcosθ 1r2ϕθ\begin{aligned} \frac{\partial^2 \phi}{\partial x^2}&=\cos^2\theta~\frac{\partial^2 \phi}{\partial r^2}-2\sin\theta\cos\theta~\frac{1}{r}\frac{\partial^2 \phi}{\partial r\partial \theta}+\sin^2\theta~\frac{1}{r^2}\frac{\partial^2 \phi}{\partial \theta^2}+\sin^2\theta~\frac{1}{r}\frac{\partial \phi}{\partial r}\\&+2\sin\theta\cos\theta~\frac{1}{r^2}\frac{\partial \phi}{\partial \theta}\\ \end{aligned}

同理可得

2ϕy2=sin2θ 2ϕr2+2sinθcosθ 1r2ϕrθ+cos2θ 1r22ϕθ2+cos2θ 1rϕr2sinθcosθ 1r2ϕθ\begin{aligned} \frac{\partial^2 \phi}{\partial y^2}&=\sin^2\theta~\frac{\partial^2 \phi}{\partial r^2}+2\sin\theta\cos\theta~\frac{1}{r}\frac{\partial^2 \phi}{\partial r\partial \theta}+\cos^2\theta~\frac{1}{r^2}\frac{\partial^2 \phi}{\partial \theta^2}+\cos^2\theta~\frac{1}{r}\frac{\partial \phi}{\partial r}\\&-2\sin\theta\cos\theta~\frac{1}{r^2}\frac{\partial \phi}{\partial \theta}\\ \end{aligned}

因此

Δϕ=2ϕx2+2ϕy2=2ϕr2+1r ϕr+1r2 2ϕθ2\Delta \phi=\frac{\partial^2 \phi}{\partial x^2}+\frac{\partial^2 \phi}{\partial y^2}=\frac{\partial^2 \phi}{\partial r^2}+\frac{1}{r}~\frac{\partial \phi}{\partial r}+\frac{1}{r^2}~\frac{\partial^2 \phi}{\partial \theta^2}

也就是說極座標下的調和函數 ϕ\phi 必須滿足

Δϕ(r,θ)=2ϕr2+1r ϕr+1r2 2ϕθ2=0.\Delta \phi(r,\theta)=\frac{\partial^2 \phi}{\partial r^2}+\frac{1}{r}~\frac{\partial \phi}{\partial r}+\frac{1}{r^2}~\frac{\partial^2 \phi}{\partial \theta^2}=0.

應用

調和函數應用在解決物理問題,包含應用再2維的熱傳模型、流體流動、靜電學等。參考補充:向量場與圓柱位勢能一節,了解 div\text{div}curl\text{curl}等數學函數之物理意義。

考量下列非壓縮與無摩擦阻力的流體問題

在平面點 z=(x,y)z=(x,y) 上的速度向量可以表為特定解析函數 ff 的函數,即

V(x,y)=f(z)V(x,y)=\overline{f(z)}

於複數平面函數 ϕ\phi 之梯度(gradient)定義為

grad ϕ(x,y)=ϕx(x,y)+iϕy(x,y)\text{grad}~\phi(x,y)=\phi_x(x,y)+i\phi_y(x,y)

而一般的梯度向量則是

ϕ(x,y)=(ϕxϕy).\nabla\phi(x,y)= \begin{pmatrix} \frac{\partial \phi}{\partial x} \\ \\ \frac{\partial \phi}{\partial y} \end{pmatrix}.

定理3.3.2. 存在定義於域 DD 上的調和函數 ϕ\phi,使得 V=grad ϕ\vec{V}=\text{grad}~ \phi

此定理中的 ϕ(x,y)\phi(x,y) 的等高線 {(x,y):ϕ(x,y)=constant}\{(x,y):\phi(x,y)=\text{constant}\} 稱為等位勢能線(equipotentials),而ψ(x,y)\psi(x,y) 的等高線 {(x,y):ψ(x,y)=constant}\{(x,y):\psi(x,y)=\text{constant}\} 稱為流線(streamline),兩者形成正交族(orthogonal family),可以用來流體流動的路徑。其間圖示如下:

例題3.3-3. 證明 ϕ(x,y)=x2y2\phi(x,y)=x^2-y^2 為流場 V=2xi2y\vec{V}=2x-i2y 之純量勢能函數。