5. (a) u(x,y)=y3−3x2y
Since f(z) is analytic function satisfy C.R.E.
{ux=vyuy=−vx {vy=−6xyvx=−(3y2−3x2)
v(x,y)=∫−6xy dy=−3xy2+g(x)
vx=−3y2+g’(x)=−3y2+3x2
∴g’(x)=3x2 , g(x)=x3+C (C is constant)
∴v(x,y)=x3−3xy2+C.
Hence, f(z)=y3−3x2y+i(3−3xy2+C).
(b) u(x,y)=sinysinhx
Since f(z) is analytic function satisfy C.R.E.
{ux=vyuy=−vx {vy=sinycoshxvx=−(cosysinhx)
v(x,y)=∫sinycoshx dy=coshx⋅(−cosy)+g(x)
vx=sinhx(−cosy)+g’(x)=−(cosysinhx)
∴g’(x)=0 , g(x)=C (C is constant)
∴v(x,y)=−cosycoshx+C
Hence, f(z)=sinysinhx+i(−cosycoshx+C)
(c) v(x,y)=eysinx
Since f(z) is analytic function satisfy C.R.E.
{ux=vyuy=−vx {ux=eysinxuy=−eycosx
u(x,y)=∫e6sinx dx=−eycosx+g(y)
uy=−eycosx+g’(y)=−eycosx
∴g’(y)=0 , g(y)=C (C is constant)
∴u(x,y)=−eycosx+C.
Hence, f(z)=−eycosx+C+i(eysinx).
(d) v(x,y)=sinxcoshy
Since f(z) is analytic function satisfy C.R.E.
{ux=vyuy=−vx {ux=sinxsinhyuy=−cosxcoshy
u(x,y)=∫sinxsinhy dx=−cosxsinhy+g(y)
uy=−cosxcoshy+g’(y)=−cosxcoshy
∴g’(y)=0 , g(y)=C (C is constant)
∴u(x,y)=−cosxsinhy+C
Hence, f(z)=cosxsinhy+C+i(sinxcoshy).