3.3 參考解答

  1. ϕ(x,y)=ax2+bxy+cy2\phi (x,y)=ax^2+bxy+cy^2

    ϕxx+ϕyy=0\phi_{xx}+\phi_{yy}=0

    ϕx=2ax+by\phi_x=2ax+by, ϕy=bx+2cy\phi_y=bx+2cy

    ϕxx=2a\phi_{xx}=2a, ϕyy=2c\phi_{yy}=2c

    2a+2c=02a+2c=0, i.e. a=ca=-c

    ϕ(x,y)=a(x2y2)+bxy\phi(x,y)=a(x^2-y^2)+bxy

5. (a) u(x,y)=y33x2yu(x,y)=y^3-3x^2y

Since f(z)f(z) is analytic function satisfy C.R.E.

{ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases} {vy=6xyvx=(3y23x2)\begin{cases} v_y=-6xy \\ v_x=-(3y^2-3x^2) \end{cases}

v(x,y)=6xy dy=3xy2+g(x) v(x,y)=\int -6xy \space dy=-3xy^2+g(x)

vx=3y2+g(x)=3y2+3x2v_x=-3y^2+g’(x)=-3y^2+3x^2 

g(x)=3x2\therefore g’(x)=3x^2 , g(x)=x3+Cg(x)=x^3+C (CC is constant)

v(x,y)=x33xy2+C\therefore v(x,y)=x^3-3xy^2+C.

Hence, f(z)=y33x2y+i(33xy2+C)f(z)=y^3-3x^2y+i(^3-3xy^2+C).

(b) u(x,y)=sinysinhxu(x,y)=\sin{y}\sinh{x}

Since f(z)f(z) is analytic function satisfy C.R.E.

{ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases} {vy=sinycoshxvx=(cosysinhx)\begin{cases} v_y=\sin{y}\cosh{x} \\ v_x=-(\cos{y}\sinh{x}) \end{cases}

v(x,y)=sinycoshx dy=coshx(cosy)+g(x)v(x,y)=\int \sin{y}\cosh{x} \space dy=\cosh{x}\cdot (-\cos{y})+g(x)

vx=sinhx(cosy)+g(x)=(cosysinhx)v_x= \sinh{x}(-\cos{y})+g’(x)=-(\cos{y}\sinh{x})

g(x)=0\therefore g’(x)=0 , g(x)=Cg(x)=C (CC is constant)

v(x,y)=cosycoshx+C\therefore v(x,y)=-\cos{y}\cosh{x}+C

Hence, f(z)=sinysinhx+i(cosycoshx+C)f(z)=\sin{y}\sinh{x}+i(-\cos{y}\cosh{x}+C)

(c) v(x,y)=eysinxv(x,y)=e^y \sin{x}

Since f(z)f(z) is analytic function satisfy C.R.E.

{ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases} {ux=eysinxuy=eycosx\begin{cases} u_x=e^y \sin{x} \\ u_y=-e^y \cos{x} \end{cases}

u(x,y)=e6sinx dx=eycosx+g(y)u(x,y)=\int e^6 \sin{x} \space dx=-e^y \cos{x}+g(y)

uy=eycosx+g(y)=eycosxu_y= -e^y \cos{x}+g’(y)=-e^y \cos{x}

g(y)=0\therefore g’(y)=0 , g(y)=Cg(y)=C (CC is constant)

u(x,y)=eycosx+C\therefore u(x,y)=-e^y \cos{x}+C.

Hence, f(z)=eycosx+C+i(eysinx)f(z)=-e^y \cos{x}+C+i(e^y \sin{x}).

(d) v(x,y)=sinxcoshyv(x,y)=\sin{x}\cosh{y}

Since f(z)f(z) is analytic function satisfy C.R.E.

{ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases} {ux=sinxsinhyuy=cosxcoshy\begin{cases} u_x=\sin{x}\sinh{y} \\ u_y=-\cos{x}\cosh{y} \end{cases}

u(x,y)=sinxsinhy dx=cosxsinhy+g(y)u(x,y)=\int \sin{x}\sinh{y} \space dx=-\cos{x}\sinh{y}+g(y)

uy=cosxcoshy+g(y)=cosxcoshyu_y=-\cos{x}\cosh{y}+g’(y)=-\cos{x}\cosh{y}

g(y)=0\therefore g’(y)=0 , g(y)=Cg(y)=C (CC is constant)

u(x,y)=cosxsinhy+C\therefore u(x,y)=-\cos{x}\sinh{y}+C

Hence, f(z)=cosxsinhy+C+i(sinxcoshy)f(z)=\cos{x}\sinh{y}+C+i(\sin{x}\cosh{y}).

  1. Since vv is harmonic conjugate of uu, then f(z)=u(x,y)+iv(x,y)f(z)=u(x,y)+iv(x,y) is analytic

    & satisfy {ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases}

    {vy=uxvx=uyi.e.f(z)=(i)(u+iv)=v+i(u)\Rightarrow \begin{cases} v_y=u_x \\ v_x=-u_y \end{cases} \xLeftrightarrow{\text{i.e.}} f^*(z)=(-i)(u+iv)=v+i(-u)

    u\therefore -u is a harmonic conjugate of vv.

  1. Since vv be a harmonic conjugate of uu.

    Let f(z)=u(x,y)+i(x,y)f(z)=u(x,y)+i(x,y) is analytic

    & f2(z)=u2v2+i(2uv)f^2(z)=u^2-v^2+i(2uv) is analytic

    & by Theorem 3.8, let h=u2v2h=u^2-v^2 is a harmonic function.

  1. Since vv is harmonic conjugate of uu \longrightarrow satisfy {ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases}

    & uu is harmonic conjugate of vv \longrightarrow satisfy {vx=uyvy=ux\begin{cases} v_x=u_y \\ v_y=-u_x \end{cases}.

    Then f(z)=u+ivf(z)=u+iv is analytic, ux=uy=vx=vy=0u_x=u_y=v_x=v_y=0.

    u\Rightarrow u, vv constant functions