- (b) f(z)=f(x,y)=x2+y2y+ix
Let u(x,y)=x2+y2y , v(x,y)=x2+y2x
ux=(x2+y2)2−y⋅(2x) , uy=(x2+y2)2(x2+y2)−y⋅(2y)=(x2+y2)2x2−y2
vx=(x2+y2)2(x2+y2)−x⋅(2x)=(x2+y2)2y2−x2 , vy=(x2+y2)2−x⋅(2y)
satisfy {ux=vyuy=−vx
Hence, f’(z)=ux+ivx=(x2+y2)2−2xy+i(y2−x2), ∀ (x,y)∈C except (0,0).
(c) f(z)=−2(xy+x)+i(x2−2y−y2)
Let u(x,y)=−2xy−2x , v(x,y)=x2−2y−y2
ux=−2y−2 , uy=−2x
vx=2x , vy=−2−2y
satisfy {ux=vyuy=−vx
Hence, f’(z)=(−2y−2)+i(2x), ∀ (x,y)∈C.
(h) f(z)=∣z−(2+i)∣2=∣(x+iy)−(2+i)∣2=(x−2)2+(y−1)2
Let u(x,y)=(x−2)2+(y−1)2 , v(x,y)=0
ux=2(x−2) , uy=2(y−1) , vx=vy=0
satisfy {ux=2(x−2)=0=vyuy=2(y−1)=0=−vx
⇒(x,y)=(2,1)
Hence, f’(z) is differentiable at (2,1) & f’(2+i)=0.
3. f(z)=(2x−y)+i(ax+by)
Let u(x,y)=2x−y, v(x,y)=ax+by
satisfy {ux=2=b=vyuy=−1=−a=−vx
∴b=2, a=1
- f(z)=excosy+iexsiny
Let u(x,y)=excosy , v(x,y)=exsiny
ux=excosy , uy=−exsiny
vx=exsiny , vy=excosy
1。 ux, uy, vx, vy are continuous, ∀ (x,y)∈C
2。 ux=vy, uy=−vx
By CRT, f’(z)=excosy+iexsiny & f(z) is analytic, then f is differentiable.
Similary, f’(z) is differentiable & f’’(z)=excosy+iexsiny.
Note, f(z)=ez=ex+iy=ex⋅eiy=ex(excosy+iexsiny),
f’(z)=ez, f’’(z)=ez
8. (a) f(z)=f(reiθ)=lnr+iθ, r>0, −π<θ<π
Let U(r,θ)=lnr & V(r,θ)=θ
Ur=r1 , Uθ=0
Vr=0, Vθ=1
Ur=r1Vθ & Vr=−r1Uθ for z=0
1。 Ur, Uθ, Vr, Vθ are continuous, ∀ z=0
2。 Ur=r1Vθ & Vr=−r1Uθ for z=0
Hence, f’(z)=f’(reiθ)=e−iθ(r1+0)=reiθ1=z1 when r>0, −π<θ<π.
- (a) f(z)=coshxsiny−isinhxcosy
Let u(x,y)=coshxsiny, v(x,y)=−sinhxcosy
ux=sinhxsiny, uy=coshxcosy
vx=−coshxcosy, vy=sinhxsiny
satisfy ux=vy, uy=−vx & ux, uy, vx, vy are continuous, ∀ (x,y)∈C
Then f(z) is analytic function & f’(z)=sinhxsiny−icoshxcosy.
Hence, f(z) is entire.
11. (b) f(z)=8x−x3−xy2+i(x2y+y3−8y)
Let u(x,y)=8x−x3−xy2 , v(x,y)=x2y+y3−8y
ux=8−3x2−y2 , uy=−2xy
vx=2xy , vy=x2+3y2−8
satisfy {ux=vyuy=−vx
⇒8−3x2−y2=x2+3y2−8, 4x2+4y2=16 得 x2+y2=4
Since f, ux, uy, vx, vy are continuous on C.
Then f is differentiable at z=x+iy.
⇔∂x∂u=∂y∂v, ∂y∂u=−∂x∂v
\therefore f is differentiable at x2+y2=4 (∣z∣=2) & f is nowhere analytic.
(c) f(z)=x2−y2+i2∣xy∣{x2−y2+2xyi for(x,y)∈I,IIIx2−y2−2xyi for(x,y)∈II,IV
1^。 I, III Let u=x2−y2, v=2xy
ux=2x, uy=−2y, vx=2y, vy=2x
satisfy: ux=vy & uy=−vx
2^。 II, IV Let u=x2−y2, v=−2xy
ux=2x, uy=−2y, vx=−2y, vy=−2x
not satisfy: ux=vy & uy=−vx
Hence, f(z) is differentiable and analytic in I & III (不含 x 軸, y 軸).