3.2 參考解答

  1. (b) f(z)=f(x,y)=y+ixx2+y2f(z)=f(x,y)=\frac{y+ix}{x^2+y^2}

    Let u(x,y)=yx2+y2u(x,y)=\frac{y}{x^2+y^2} , v(x,y)=xx2+y2v(x,y)=\frac{x}{x^2+y^2}

    ux=y(2x)(x2+y2)2u_x=\frac{-y \cdot (2x)}{(x^2+y^2)^2} , uy=(x2+y2)y(2y)(x2+y2)2=x2y2(x2+y2)2u_y=\frac{(x^2+y^2)-y \cdot(2y)}{(x^2+y^2)^2}=\frac{x^2-y^2}{(x^2+y^2)^2}

    vx=(x2+y2)x(2x)(x2+y2)2=y2x2(x2+y2)2v_x=\frac{(x^2+y^2)-x \cdot (2x)}{(x^2+y^2)^2}=\frac{y^2-x^2}{(x^2+y^2)^2} , vy=x(2y)(x2+y2)2v_y=\frac{-x \cdot (2y)}{(x^2+y^2)^2}

    satisfy {ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases}

    Hence, f(z)=ux+ivx=2xy+i(y2x2)(x2+y2)2f’(z)=u_x+iv_x=\frac{-2xy+i(y^2-x^2)}{(x^2+y^2)^2},  (x,y)C\forall \space (x,y) \in \mathbb{C} except (0,0)(0,0).

    (c) f(z)=2(xy+x)+i(x22yy2)f(z)=-2(xy+x)+i(x^2-2y-y^2)

    Let u(x,y)=2xy2xu(x,y)=-2xy-2x , v(x,y)=x22yy2v(x,y)=x^2-2y-y^2

    ux=2y2u_x=-2y-2 , uy=2xu_y=-2x

    vx=2xv_x=2x , vy=22yv_y=-2-2y

    satisfy {ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases}

    Hence, f(z)=(2y2)+i(2x)f’(z)=(-2y-2)+i(2x),  (x,y)C\forall \space (x,y) \in \mathbb{C}.

    (h) f(z)=z(2+i)2=(x+iy)(2+i)2=(x2)2+(y1)2f(z)=|z-(2+i)|^2=|(x+iy)-(2+i)|^2=(x-2)^2+(y-1)^2

    Let u(x,y)=(x2)2+(y1)2u(x,y)=(x-2)^2+(y-1)^2 , v(x,y)=0v(x,y)=0

    ux=2(x2)u_x=2(x-2) , uy=2(y1)u_y=2(y-1) , vx=vy=0v_x=v_y=0

    satisfy {ux=2(x2)=0=vyuy=2(y1)=0=vx\begin{cases} u_x=2(x-2)=0=v_y \\ u_y=2(y-1)=0=-v_x \end{cases}

    (x,y)=(2,1)\Rightarrow (x,y)=(2,1)

    Hence, f(z)f’(z) is differentiable at (2,1)(2,1) & f(2+i)=0f’(2+i)=0.

3. f(z)=(2xy)+i(ax+by)f(z)=(2x-y)+i(ax+by)

Let u(x,y)=2xyu(x,y)=2x-y, v(x,y)=ax+byv(x,y)=ax+by

satisfy {ux=2=b=vyuy=1=a=vx\begin{cases} u_x=2=b=v_y \\ u_y=-1=-a=-v_x \end{cases}

b=2\therefore b=2, a=1a=1

  1. f(z)=excosy+iexsinyf(z)=e^x \cos{y}+ie^x \sin{y}

    Let u(x,y)=excosyu(x,y)=e^x \cos{y} , v(x,y)=exsinyv(x,y)=e^x \sin{y}

    ux=excosyu_x=e^x \cos{y} , uy=exsinyu_y=-e^x \sin{y}

    vx=exsinyv_x=e^x \sin{y} , vy=excosyv_y=e^x \cos{y}

    11^。 uxu_x, uyu_y, vxv_x, vyv_y are continuous,  (x,y)C\forall \space (x,y) \in \mathbb{C}

    22^。 ux=vyu_x=v_y, uy=vxu_y=-v_x

    By CRT, f(z)=excosy+iexsinyf’(z)=e^x \cos{y}+ie^x \sin{y} & f(z)f(z) is analytic, then ff is differentiable.

    Similary, f(z)f’(z) is differentiable & f’’(z)=excosy+iexsinyf’’(z)=e^x \cos{y}+ie^x \sin{y}.

    Note, f(z)=ez=ex+iy=exeiy=ex(excosy+iexsiny)f(z)=e^z=e^{x+iy}=e^x \cdot e^{iy}=e^x(e^x \cos{y}+ie^x \sin{y}),

    f(z)=ezf’(z)=e^z, f’’(z)=ezf’’(z)=e^z

8. (a) f(z)=f(reiθ)=lnr+iθf(z)=f(re^{i\theta})=\ln{r}+i\theta, r>0r>0, π<θ<π-\pi<\theta<\pi

Let U(r,θ)=lnrU(r,\theta)=\ln{r} & V(r,θ)=θV(r,\theta)=\theta

Ur=1rU_r=\frac{1}{r} , Uθ=0U_\theta=0

Vr=0V_r=0, Vθ=1V_\theta=1

Ur=1rVθU_r=\frac{1}{r}V_\theta & Vr=1rUθV_r=-\frac{1}{r}U_\theta for z0z \neq 0

11^。 UrU_r, UθU_\theta, VrV_r, VθV_\theta are continuous,  z0\forall \space z \neq 0

22^。 Ur=1rVθU_r=\frac{1}{r}V_\theta & Vr=1rUθV_r=-\frac{1}{r}U_\theta for z0z \neq 0

Hence, f(z)=f(reiθ)=eiθ(1r+0)=1reiθ=1zf’(z)=f’(re^{i\theta})=e^{-i\theta}(\frac{1}{r}+0)=\frac{1}{re^{i\theta}}=\frac{1}{z} when r>0r>0, π<θ<π-\pi<\theta<\pi.

  1. (a) f(z)=coshxsinyisinhxcosyf(z)=\cosh{x}\sin{y}-i\sinh{x}\cos{y}

    Let u(x,y)=coshxsinyu(x,y)=\cosh{x}\sin{y}, v(x,y)=sinhxcosyv(x,y)=-\sinh{x}\cos{y}

    ux=sinhxsinyu_x=\sinh{x}\sin{y}, uy=coshxcosyu_y=\cosh{x}\cos{y}

    vx=coshxcosyv_x=-\cosh{x}\cos{y}, vy=sinhxsinyv_y=\sinh{x}\sin{y}

    satisfy ux=vyu_x=v_y, uy=vxu_y=-v_x & uxu_x, uyu_y, vxv_x, vyv_y are continuous,  (x,y)C\forall \space (x,y) \in \mathbb{C}

    Then f(z)f(z) is analytic function & f(z)=sinhxsinyicoshxcosyf’(z)=\sinh{x}\sin{y}-i\cosh{x}\cos{y}.

    Hence, f(z)f(z) is entire.

11. (b) f(z)=8xx3xy2+i(x2y+y38y)f(z)=8x-x^3-xy^2+i(x^2y+y^3-8y)

Let u(x,y)=8xx3xy2u(x,y)=8x-x^3-xy^2 , v(x,y)=x2y+y38yv(x,y)=x^2y+y^3-8y

ux=83x2y2u_x=8-3x^2-y^2 , uy=2xyu_y=-2xy

vx=2xyv_x=2xy , vy=x2+3y28v_y=x^2+3y^2-8

satisfy {ux=vyuy=vx\begin{cases} u_x=v_y \\ u_y=-v_x \end{cases}

83x2y2=x2+3y28\Rightarrow 8-3x^2-y^2=x^2+3y^2-8, 4x2+4y2=164x^2+4y^2=16x2+y2=4x^2+y^2=4

Since ff, uxu_x, uyu_y, vxv_x, vyv_y are continuous on C\mathbb{C}.

Then ff is differentiable at z=x+iyz=x+iy.

ux=vy\Leftrightarrow \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, uy=vx\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}

\therefore ff is differentiable at x2+y2=4x^2+y^2=4 (z=2|z|=2) & ff is nowhere analytic.

(c) f(z)=x2y2+i2xy{x2y2+2xyi for(x,y)I,IIIx2y22xyi for(x,y)II,IVf(z)=x^2-y^2+i2|xy| \begin{cases} x^2-y^2+2xyi \space \text{for} (x,y) \in \rm{I}, \rm{III} \\ x^2-y^2-2xyi \space \text{for} (x,y) \in \rm{II}, \rm{IV} \end{cases}

1^。 I\rm{I}, III\rm{III} Let u=x2y2u=x^2-y^2, v=2xyv=2xy

ux=2x,u_x=2x, uy=2y,u_y=-2y, vx=2yv_x=2y, vy=2xv_y=2x

satisfy: ux=vyu_x=v_y & uy=vxu_y=-v_x

2^。 II\rm{II}, IV\rm{IV} Let u=x2y2u=x^2-y^2, v=2xyv=-2xy

ux=2x,u_x=2x, uy=2y,u_y=-2y, vx=2yv_x=-2y, vy=2xv_y=-2x

not satisfy: uxvyu_x \neq v_y & uyvxu_y \neq -v_x

Hence, f(z)f(z) is differentiable and analytic in I\rm{I} & III\rm{III} (不含 xx 軸, yy 軸).