3.1 參考解答

  1. (a) f(z)=5z34z2+7z8f(z)=5z^3-4z^2+7z-8

    f(z)=15z28z+7f’(z)=15z^2-8z+7

    (b) g(z)=(z2iz+9)5g(z)=(z^2-iz+9)^5

    g(z)=5(z2iz+9)4(2zi)g’(z)=5(z^2-iz+9)^4(2z-i)

    (c) h(z)=2z+1z+2h(z)=\frac{2z+1}{z+2} for z2z \neq -2

    h(z)=2(z+2)(2z+1)1(z+2)2=3(z+2)2h’(z)=\frac{2(z+2)-(2z+1)\cdot 1}{(z+2)^2}=\frac{3}{(z+2)^2} for z2z \neq -2

    (d) F(z)=[z2+(13i)z+1][z4+3z2+5i]F(z)=[z^2+(1-3i)z+1][z^4+3z^2+5i]

    F(z)=[2z+(13i)][z4+3z2+5i]+[z2+(13i)z+1][4z3+6z]F’(z)=[2z+(1-3i)][z^4+3z^2+5i]+[z^2+(1-3i)z+1][4z^3+6z]

  1. (a) f(z)=Re(zf(z)=\text{Re}(z), let z=x+iyz=x+iy

    11^。 limzz0y=0Re(z)Re(z0)zz0=lim(x,y)(x0,y0)y=0xx0(x+iy)(x0+iy0)=limxx0xx0xx0=1\lim_{z \to z_0 \atop y=0} \frac{\text{Re}(z)-\text{Re}(z_0)}{z-z_0}=\lim_{(x,y) \to (x_0,y_0) \atop y=0} \frac{x-x_0}{(x+iy)-(x_0+iy_0)}=\lim_{x \to x_0} \frac{x-x_0}{x-x_0}=1

    22^。 limzz0x=0Re(z)Re(z0)zz0=lim(x,y)(x0,y0)x=0xx0(x+iy)(x0+iy0)=limxx0xx0i(yy0)=0\lim_{z \to z_0 \atop x=0} \frac{\text{Re}(z)-\text{Re}(z_0)}{z-z_0}=\lim_{(x,y) \to (x_0,y_0) \atop x=0} \frac{x-x_0}{(x+iy)-(x_0+iy_0)}=\lim_{x \to x_0} \frac{x-x_0}{i(y-y_0)}=0

    By 121^。\neq 2^。, Re(z)\text{Re}(z) is differentiable nowhere.

    (b) f(z)=Im(z)f(z)=\text{Im}(z), let z=x+iyz=x+iy

    11^。 limzz0x=0Im(z)Im(z0)zz0=lim(x,y)(x0,y0)x=0yy0(x+iy)(x0+iy0)=limyy0yy0i(yy0)=i\lim_{z \to z_0 \atop x=0} \frac{\text{Im}(z)-\text{Im}(z_0)}{z-z_0}=\lim_{(x,y) \to (x_0,y_0) \atop x=0} \frac{y-y_0}{(x+iy)-(x_0+iy_0)}=\lim_{y \to y_0} \frac{y-y_0}{i(y-y_0)}=-i

    22^。 limzz0y=0Re(z)Re(z0)zz0=lim(x,y)(x0,y0)y=0yy0(x+iy)(x0+iy0)=limyy0yy0xx0=0\lim_{z \to z_0 \atop y=0} \frac{\text{Re}(z)-\text{Re}(z_0)}{z-z_0}=\lim_{(x,y) \to (x_0,y_0) \atop y=0} \frac{y-y_0}{(x+iy)-(x_0+iy_0)}=\lim_{y \to y_0} \frac{y-y_0}{x-x_0}=0

    By 121^。\neq 2^。, Im(z)\text{Im}(z) is differentiable nowhere.

  1. (a)(b)(e)(f), (c) provided that g(z)0g(z) \neq 0,  zC\forall \space z \in \mathbb{C}

6. P(z)=(zz1)(zz2)P(z)=(z-z_1)(z-z_2)

P(z)=(zz2)+(zz1)P’(z)=(z-z_2)+(z-z_1)

P(z)P(z)=(zz2)+(zz1)(zz1)(zz2)=1zz1+1zz2\therefore \frac{P’(z)}{P(z)}=\frac{(z-z_2)+(z-z_1)}{(z-z_1)(z-z_2)}=\frac{1}{z-z_1}+\frac{1}{z-z_2}

  1. (a) limziz41zi=limz4z31=4(i)3=4i\lim_{z \to i} \frac{z^4-1}{z-i}=\lim_{z \to } \frac{4z^3}{1}=4(i)^3=-4i

    (b) limz1+iz2iz2iz22z+2=limz1+i2zi2z2=2+i2i=12i\lim_{z \to 1+i} \frac{z^2-iz-2-i}{z^2-2z+2}=\lim_{z \to 1+i} \frac{2z-i}{2z-2}=\frac{2+i}{2i}=\frac{1}{2}-i

    (c) limziz6+1z2+1=limzi6z52z=6i2i=3\lim_{z \to -i} \frac{z^6+1}{z^2+1}=\lim_{z \to -i} \frac{6z^5}{2z}=\frac{-6i}{-2i}=3

    (d) limz1+iz4+4z22z+2=limz1+i4z32z2=limz1+i2z3z1=4i(1+i)i=4+4i\lim_{z \to 1+i} \frac{z^4+4}{z^2-2z+2}=\lim_{z \to 1+i} \frac{4z^3}{2z-2}=\lim_{z \to 1+i} \frac{2z^3}{z-1}=\frac{4i(1+i)}{i}=4+4i

    (g) limz1+i3z664z3+8=limz1+i36z53z2=2(1+i3)3=16\lim_{z \to 1+i\sqrt{3}} \frac{z^6-64}{z^3+8}=\lim_{z \to 1+i\sqrt{3}} \frac{6z^5}{3z^2}=2(1+i\sqrt{3})^3=-16

    (f) limz1+i3z9512z38=limz1+i39z83z2=3(1+i3)6=192\lim_{z \to -1+i\sqrt{3}} \frac{z^9-512}{z^3-8}=\lim_{z \to -1+i\sqrt{3}} \frac{9z^8}{3z^2}=3(-1+i\sqrt{3})^6=192