(a) f(z)=Re(z), let z=x+iy 1。 limy=0z→z0z−z0Re(z)−Re(z0)=limy=0(x,y)→(x0,y0)(x+iy)−(x0+iy0)x−x0=limx→x0x−x0x−x0=1
2。 limx=0z→z0z−z0Re(z)−Re(z0)=limx=0(x,y)→(x0,y0)(x+iy)−(x0+iy0)x−x0=limx→x0i(y−y0)x−x0=0
By 1。=2。, Re(z) is differentiable nowhere.
(b) f(z)=Im(z), let z=x+iy
1。 limx=0z→z0z−z0Im(z)−Im(z0)=limx=0(x,y)→(x0,y0)(x+iy)−(x0+iy0)y−y0=limy→y0i(y−y0)y−y0=−i
2。 limy=0z→z0z−z0Re(z)−Re(z0)=limy=0(x,y)→(x0,y0)(x+iy)−(x0+iy0)y−y0=limy→y0x−x0y−y0=0
By 1。=2。, Im(z) is differentiable nowhere.