- D34(−32i)={z:∣z+32i∣<34}, f(z)=z1
w=f(z)=z1⇔z=f−1(w)=w1=u2+v2u+iu2+v2−v
∴x=u2+v2u, y=u2+v2−v
∣z+32i∣<34⇔(u2+v2u)2+(32+u2+v2−v)2<(34)2
⇔(u2+v2)2u2+94−34u2+v2v+(u2+v2)2v2<916
⇔u2+v21−3(u2+v2)4v−34<0
⇔3−4v−4(u2+v2)<0
⇔4u2+4v2+4v−3>0
⇔(u−0)2+(v+21)2>1
which is exterior of the disk D1(−2i)={(u,v) ∣ u2+(v+21)2>1}.
16. y<x−21f(z)=z1∣w−1−i∣<2
u2+v2−v<u2+v2u−21⇔u2−2u+v2−2v<0
⇔(u−1)2+(v−1)2<2
which is the disk D2(1+i).
D2(1+i)={(u,v):∣w−1−i∣<2}
- 2x=1−y2f(z)=z1ρ=1+cosϕ
u2+v22u=1−(u2+v2−v)2,w=u+iv=ρeiϕ=0,u=ρcosϕ,v=ρsinϕ
⇔2u(u2+v2)=(u2+v2)2−v2
⇔2ρcosϕ⋅ρ2=ρ4−ρ2sin2ϕ
⇔ρ2−2ρcosϕ−sin2ϕ=0
ρ=22cosϕ±4=cosϕ±1 (取正), ρ>0
- ∀ ε>0, ∃ R=ε2+1>0, ∣z∣>R=ε2+1>0
⇒∣z−1∣≥∣z∣−1>R−1=ε2⇔∣z−1∣1<2ε
such that ∣z−1z+1−1∣=∣z−1(z+1)−(z−1)∣=∣z−1∣2
=2⋅∣z−1∣1<2⋅2ε=ε