- (a) II. w=f1(z)=∣z∣21ei2Arg (z)=r21ei2θ=r21(cos2θ+isin2θ), −π<θ≤π
x<0, y>0
Let z=reiθ, r>0, 2π<θ<π
∴w=f1(z)=ρeiϕ, ϕ=2θ, ρ=r21>0
2π<θ<π⇒4π<2θ<2π,4π<ϕ<2π
Hence, the sector ρ=r21>0 & 4π<ϕ<2π.
(b) II. w=f2(z)=∣z∣21ei2Arg+2 (z)+2π=r21ei2θ+2π
Let z=reiθ, r>0, 2π<θ<π
w=f2(z)=ρeiϕ, ρ=r21>0, ϕ=2θ+2π
25π<θ+2π<3π⇒45π<2θ+2π<23π,45π<ϕ<23π
Hence, the sector ρ=r21>0 & 45π<ϕ<23π.
5. f1(z)=∣z∣31ei3Arg (z)=r31(cos3θ+isin3θ), ∣z∣=r, θ=Arg (z)
(a) ∀ z=reiθ∈C, r>0, θ=Arg (z),
then [f1(z)]3=(∣z∣31ei3Arg (z))3=∣z∣eiArg (z)=z
∴f1 is a branch of the cube root function.
(b) {z=reiθ∣r>0, −π<θ≤π}
Let f1(z)=ρeiϕ=∣z∣31ei3Arg (z)
ρ=∣z∣31>0, −π<θ≤π⇒−3π<3Arg (z)≤3π
image(f1)={ρeiϕ ∣ ρ>0, −3π<ϕ≤3π}
(c) f1 is continuous except z=0 & point on the negative x-axis.
⇒f1 on C \ {(x,0) ∣ x≤0}
lim(r,θ)→(r0,π)f1(reiθ)=lim(r,θ)→(r0,π)r31(cos3θ+isin3θ)=r031(21+23i)
lim(r,θ)→(r0,−π)f1(reiθ)=lim(r,θ)→(r0,−π)r31(cos3θ+isin3θ)=r031(21−23i)
- f2(z)=r31cos(3θ+2π)+ir31sin(3θ+2π), where r>0, −π<θ≤π
(a) ∀ z=reiθ∈C, r>0, θ=Arg (z)
(f2(z))3=(r31ei3θ+2π)3=rei(θ+2π)=reiθ=z
∴f2 is a branch of the cube root function.
(b) {z=reiθ ∣ r>0,−π<θ≤π}
Let f2(z)=ρeiϕ & f2(z)=r31ei3θ+2π
∴ρ=r31 & ρ>0
−π<θ≤π⇒π<θ+2π≤3π
⇒3π<3θ+2π≤π (i.e. 3π<ϕ≤π)
∴image (f2)={ρeiϕ ∣ ρ>0,3π<ϕ≤π}
(c) f_2 is continuous everywhere except z=0 and the point on the negative x-axis.
(d) 0 is the branch point.
9. (a) w=f(z)=z31, z=reiθ, −π<θ≤π
f1(z)=r31ei3θ, f2(z)=r31ei3θ+2π, f3(z)=r31ei3θ+4π
Let D1={reiθ:r>0,−π<θ≤π}
D2={reiθ:r>0,π<θ≤3π}
D3={reiθ:r>0,3π<θ≤5π}
從 x 軸的負數軸部分剪開,D3 在 D2 上方,D2 在 D1 上方,
而 D1 的上半平面接在 D2 的下半平面 (θ=π)
D2 的上半平面接在 D3 的下半平面 (θ=3π)
D3 的上半平面接在 D1 的下半平面 (θ=−π)
(θ=5π)
其這3層的domain分別使 f(z)=z31 為1-1的function。