2.4 參考解答

  1. (a) II\rm{II}. w=f1(z)=z12eiArg (z)2=r12eiθ2=r12(cosθ2+isinθ2)w=f_1(z)=|z|^{\frac{1}{2}}e^{i\frac{\text{Arg}\space (z)}{2}}=r^{\frac{1}{2}}e^{i\frac{\theta}{2}}=r^{\frac{1}{2}}(\cos{\frac{\theta}{2}}+i\sin{\frac{\theta}{2}}), π<θπ-\pi< \theta \leq \pi

    x<0x<0, y>0y>0

    Let z=reiθz=re^{i\theta}, r>0r>0, π2<θ<π\frac{\pi}{2}<\theta<\pi

    w=f1(z)=ρeiϕ\therefore w=f_1(z)=\rho e^{i\phi}, ϕ=θ2\phi=\frac{\theta}{2}, ρ=r12>0\rho=r^{\frac{1}{2}}>0

    π2<θ<ππ4<θ2<π2,π4<ϕ<π2\frac{\pi}{2}<\theta<\pi \Rightarrow \frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{2}, \frac{\pi}{4}<\phi<\frac{\pi}{2}

    Hence, the sector ρ=r12>0\rho =r^{\frac{1}{2}}>0 & π4<ϕ<π2\frac{\pi}{4}<\phi<\frac{\pi}{2}.

    (b) II\rm{II}. w=f2(z)=z12eiArg+2 (z)+2π2=r12eiθ+2π2w=f_2(z)=|z|^{\frac{1}{2}}e^{i\frac{\text{Arg}+2\space (z)+2\pi}{2}}=r^{\frac{1}{2}}e^{i\frac{\theta+2\pi}{2}}

    Let z=reiθz=re^{i\theta}, r>0r>0, π2<θ<π\frac{\pi}{2}<\theta<\pi

    w=f2(z)=ρeiϕw=f_2(z)=\rho e^{i\phi}, ρ=r12>0\rho=r^{\frac{1}{2}}>0, ϕ=θ+2π2\phi=\frac{\theta+2\pi}{2}

    5π2<θ+2π<3π5π4<θ+2π2<3π2,5π4<ϕ<3π2\frac{5\pi}{2}<\theta+2\pi<3\pi \Rightarrow \frac{5\pi}{4}<\frac{\theta+2\pi}{2}<\frac{3\pi}{2}, \frac{5\pi}{4}<\phi<\frac{3\pi}{2}

    Hence, the sector ρ=r12>0\rho =r^{\frac{1}{2}}>0 & 5π4<ϕ<3π2\frac{5\pi}{4}<\phi<\frac{3\pi}{2}.

5. f1(z)=z13eiArg (z)3=r13(cosθ3+isinθ3)f_1(z)=|z|^{\frac{1}{3}}e^{i\frac{\text{Arg}\space (z)}{3}}=r^{\frac{1}{3}}(\cos{\frac{\theta}{3}}+i\sin{\frac{\theta}{3}}), z=r|z|=r, θ=Arg (z)\theta=\text{Arg}\space (z)

(a)  z=reiθC\forall \space z=re^{i\theta} \in \mathbb{C}, r>0r>0, θ=Arg (z)\theta=\text{Arg} \space (z),

then [f1(z)]3=(z13eiArg (z)3)3=zeiArg (z)=z[f_1(z)]^3=(|z|^{\frac{1}{3}}e^{i\frac{\text{Arg}\space (z)}{3}})^3=|z|e^{i\text{Arg}\space (z)}=z

f1\therefore f_1 is a branch of the cube root function.

(b) {z=reiθr>0z=re^{i\theta}|r>0, π<θπ-\pi< \theta \leq \pi}

Let f1(z)=ρeiϕ=z13eiArg (z)3f_1(z)=\rho e^{i\phi}=|z|^{\frac{1}{3}}e^{i\frac{\text{Arg}\space (z)}{3}}

ρ=z13>0\rho =|z|^{\frac{1}{3}}>0, π<θππ3<Arg (z)3π3-\pi<\theta \leq \pi \Rightarrow -\frac{\pi}{3}<\frac{\text{Arg}\space (z)}{3} \leq \frac{\pi}{3}

image(f1)=\text{image}(f_1)={ρeiϕ  ρ>0\rho e^{i\phi}\space|\space \rho >0, π3<ϕπ3-\frac{\pi}{3}<\phi \leq \frac{\pi}{3}}

(c) f1f_1 is continuous except z=0z=0 & point on the negative xx-axis.

f1\Rightarrow f_1 on C\mathbb{C} \ {(x,0)  x0}\{(x,0)\space|\space x \leq 0\}

lim(r,θ)(r0,π)f1(reiθ)=lim(r,θ)(r0,π)r13(cosθ3+isinθ3)=r013(12+32i)\lim_{(r,\theta) \rightarrow (r_0,\pi)} f_1(re^{i\theta})=\lim_{(r,\theta) \rightarrow (r_0,\pi)} r^{\frac{1}{3}}(\cos{\frac{\theta}{3}}+i\sin{\frac{\theta}{3}})=r_0^{\frac{1}{3}}(\frac{1}{2}+\frac{\sqrt{3}}{2}i)

lim(r,θ)(r0,π)f1(reiθ)=lim(r,θ)(r0,π)r13(cosθ3+isinθ3)=r013(1232i)\lim_{(r,\theta) \rightarrow (r_0,-\pi)} f_1(re^{i\theta})=\lim_{(r,\theta) \rightarrow (r_0,-\pi)} r^{\frac{1}{3}}(\cos{\frac{\theta}{3}}+i\sin{\frac{\theta}{3}})=r_0^{\frac{1}{3}}(\frac{1}{2}-\frac{\sqrt{3}}{2}i)

  1. f2(z)=r13cos(θ+2π3)+ir13sin(θ+2π3)f_2(z)=r^{\frac{1}{3}}\cos{(\frac{\theta+2\pi}{3}})+ir^{\frac{1}{3}}\sin{(\frac{\theta+2\pi}{3}}), where r>0r>0, π<θπ-\pi<\theta \leq \pi

    (a)  z=reiθC\forall \space z=re^{i\theta} \in \mathbb{C}, r>0r>0, θ=Arg (z)\theta=\text{Arg}\space (z)

    (f2(z))3=(r13eiθ+2π3)3=rei(θ+2π)=reiθ=z(f_2(z))^3=(r^{\frac{1}{3}}e^{i\frac{\theta+2\pi}{3}})^3=re^{i(\theta+2\pi)}=re^{i\theta}=z

    f2\therefore f_2 is a branch of the cube root function.

    (b) {z=reiθ  r>0,π<θπ}\{ z=re^{i\theta}\space|\space r>0, -\pi<\theta \leq \pi \}

    Let f2(z)=ρeiϕf_2(z)=\rho e^{i\phi} & f2(z)=r13eiθ+2π3f_2(z)=r^{\frac{1}{3}}e^{i\frac{\theta+2\pi}{3}}

    ρ=r13\therefore \rho =r^{\frac{1}{3}} & ρ>0\rho >0

    π<θππ<θ+2π3π-\pi<\theta \leq \pi \Rightarrow \pi <\theta+2\pi \leq 3\pi

    π3<θ+2π3π\Rightarrow \frac{\pi}{3}< \frac{\theta+2\pi}{3} \leq \pi (i.e. π3<ϕπ\frac{\pi}{3}<\phi \leq \pi)

    image (f2)={ρeiϕ  ρ>0,π3<ϕπ}\therefore \text{image}\space (f_2)=\{\rho e^{i\phi}\space|\space \rho>0, \frac{\pi}{3}<\phi \leq \pi\}

    (c) f_2 is continuous everywhere except z=0z=0 and the point on the negative xx-axis.

    (d) 00 is the branch point.

9. (a) w=f(z)=z13w=f(z)=z^{\frac{1}{3}}, z=reiθz=re^{i\theta}, π<θπ-\pi<\theta \leq \pi

f1(z)=r13eiθ3f_1(z)=r^{\frac{1}{3}}e^{i\frac{\theta}{3}}, f2(z)=r13eiθ+2π3f_2(z)=r^{\frac{1}{3}}e^{i\frac{\theta+2\pi}{3}}, f3(z)=r13eiθ+4π3f_3(z)=r^{\frac{1}{3}}e^{i\frac{\theta+4\pi}{3}}

Let D1={reiθ:r>0,π<θπ}D_1=\{re^{i\theta}: r>0, -\pi<\theta \leq \pi\}

D2={reiθ:r>0,π<θ3π}D_2=\{re^{i\theta}: r>0, \pi<\theta \leq 3\pi\}

D3={reiθ:r>0,3π<θ5π}D_3=\{ re^{i\theta}: r>0, 3\pi<\theta \leq 5\pi \}

xx 軸的負數軸部分剪開,D3D_3D2D_2 上方,D2D_2D1D_1 上方,

D1D_1 的上半平面接在 D2D_2 的下半平面 (θ=π\theta=\pi)

D2D_2 的上半平面接在 D3D_3 的下半平面 (θ=3π\theta=3\pi)

D3D_3 的上半平面接在 D1D_1 的下半平面 (θ=π\theta=-\pi)

(θ=5π\theta=5\pi)

其這3層的domain分別使 f(z)=z13f(z)=z^{\frac{1}{3}} 為1-1的function。