- (c) limz→iz−iz4−1=limz→iz−i(z2−1)(z−i)(z+i)=(i2−1)(i+i)=−2⋅2i=−4i
(d) limz→1+iz2−2z+1z2+z−2+i=−1−1+4i=1−4i
分子:z2+z−2+i=(1+i)2+(1+i)−2+i
=1+2i−1+1+i−2+i=−1+4i
分母:z2−2z+1=(z−1)2=(1+i−1)2=i2=−1
(e) limz→1+iz2−2z+2z2+z−1−3i=limz→1+i[z−(1+i)][z−(1−i)][z−(−2−i)][z−(1+i)]=(1+i)−(1−i)(1+i)−(−2−i)=2i3+2i=1−23i
分母:z2−2z+2=z2−2z+1+2−1=(z−1)2−i2
=[z−(1+i)][z−(1−i)]
分子:z2+z−1−3i=[z−(a+bi)][z−(1+i)]
⇒a=−2, b=−1
- (d) Let f(z)=z2+2z+2z4+1=(z+1)2+1z4+1.
Hence, f(z) is continuous everywhere.
(e) x−1x+iy, continuous everywhere except at {(x,y) ∣ x=1}.
(f) ∣z∣−1x+iy, continuous everywhere except at {(x,y) ∣ x2+y2=1}.
- f(z)={∣z∣zRe(z),z=0,0,z=0. Show that limz→0∣z∣zRe(z)=0.
1。 ∀ ε>0, ∃ δ≡ε>0 such that 0<∣z−0∣=∣z∣<δ
⇒∣∣z∣zRe(z)−0∣=∣Re(z)∣≤∣z∣<δ=ε
∴limz→0∣z∣zRe(z)=0
2。 z, Re(z), ∣z∣ are continuous function on C.
⇒∣z∣zRe(z) is continuous for any z=0.
By 1。, 2。, limz→0∣z∣zRe(z)=0=f(0), f(z) is continuous on C.
- (a) limz→0∣z∣2z2=limalong y=x(x,y)→(0,0)x2+y2x2−y2+i2xy=limx→0x2+x2x2−x2+i2x⋅x=limx→02x22x2i=i
(b) limz→0∣z∣2z2=limalong y=2x(x,y)→(0,0)x2+y2x2−y2+i2xy=limx→0x2+(2x)2x2−(2x)2+i2x⋅(2x)
=limx→05x2−3x2+4x2i=5−3+4i=51(−3+4i)
(c) limz→0∣z∣2z2=limalong y=x2(x,y)→(0,0)x2+y2x2−y2+i2xy=limx→0x2+(x2)2x2−(x2)2+i2x⋅x2
=limx→0x2+x4x2−x4+2x3i=limx→01+x21−x2+2xi=1
(d) No! By (a)(b)(c).
10. ∵−π<Arg z≤π
1。 θ=Arg z≤π, limz→−4Arg z=π
2。 −π<θ≤Arg z, limz→−4Arg z=−π
By 1。, 2。, limz→−4Arg z doesn’t exist.
- f(z)={∣z∣Re(z),z=01,z=0
1。 limz→0∣z∣Re(z)=limalong y=x(x,y)→(0,0)x2+y2x=limx→0x2+x2x=21
2。 limz→0∣z∣Re(z)=limalong y=2x(x,y)→(0,0)x2+y2x=limx→0x2+(2x)2x=51
By 1。, 2。, limz→0∣z∣2Re(z) doesn’t exist, f(z) is not continuous on z=0.