2.3 參考解答

  1. (c) limziz41zi=limzi(z21)(zi)(z+i)zi=(i21)(i+i)=22i=4i\lim_{z \to i} \frac{z^4-1}{z-i}=\lim_{z \to i} \frac{(z^2-1)(z-i)(z+i)}{z-i}=(i^2-1)(i+i)=-2 \cdot 2i=-4i

    (d) limz1+iz2+z2+iz22z+1=1+4i1=14i\lim_{z \to 1+i} \frac{z^2+z-2+i}{z^2-2z+1}=\frac{-1+4i}{-1}=1-4i

    分子:z2+z2+i=(1+i)2+(1+i)2+iz^2+z-2+i=(1+i)^2+(1+i)-2+i

    =1+2i1+1+i2+i=1+4i =1+2i-1+1+i-2+i=-1+4i

    分母:z22z+1=(z1)2=(1+i1)2=i2=1z^2-2z+1=(z-1)^2=(1+i-1)^2=i^2=-1

    (e) limz1+iz2+z13iz22z+2=limz1+i[z(2i)][z(1+i)][z(1+i)][z(1i)]=(1+i)(2i)(1+i)(1i)=3+2i2i=132i\lim_{z \to 1+i} \frac{z^2+z-1-3i}{z^2-2z+2}=\lim_{z \to 1+i} \frac{[z-(-2-i)][z-(1+i)]}{[z-(1+i)][z-(1-i)]}=\frac{(1+i)-(-2-i)}{(1+i)-(1-i)}=\frac{3+2i}{2i}=1-\frac{3}{2}i

    分母:z22z+2=z22z+1+21=(z1)2i2z^2-2z+2=z^2-2z+1+2-1=(z-1)^2-i^2

    =[z(1+i)][z(1i)]=[z-(1+i)][z-(1-i)]

    分子:z2+z13i=[z(a+bi)][z(1+i)]z^2+z-1-3i=[z-(a+bi)][z-(1+i)]

    a=2\Rightarrow a=-2, b=1b=-1

  1. (d) Let f(z)=z4+1z2+2z+2=z4+1(z+1)2+1f(z)=\frac{z^4+1}{z^2+2z+2}=\frac{z^4+1}{(z+1)^2+1}.

Hence, f(z)f(z) is continuous everywhere.

(e) x+iyx1\frac{x+iy}{x-1}, continuous everywhere except at {(x,y)  x=1}\{(x,y)\space|\space x=1\}.

(f) x+iyz1\frac{x+iy}{|z|-1}, continuous everywhere except at {(x,y)  x2+y2=1}\{(x,y)\space|\space x^2+y^2=1\}.

  1. f(z)={zRe(z)z,z0,0,z=0.f(z)=\begin{cases} \frac{z\text{Re}(z)}{|z|}, z \neq 0, \\ 0, z=0. \end{cases} Show that limz0zRe(z)z=0\lim_{z \to 0} \frac{z\text{Re}(z)}{|z|}=0.

    11^。  ε>0\forall \space \varepsilon>0,  δε>0\exist \space\delta \equiv \varepsilon >0 such that 0<z0=z<δ0<|z-0|=|z|<\delta

    zRe(z)z0=Re(z)z<δ=ε\Rightarrow |\frac{z\text{Re}(z)}{|z|}-0|=|\text{Re}(z)| \leq |z| < \delta =\varepsilon

    limz0zRe(z)z=0\therefore \lim_{z \to 0} \frac{z\text{Re}(z)}{|z|}=0

    22^。 zz, Re(z)\text{Re}(z), z|z| are continuous function on C\mathbb{C}.

    zRe(z)z\Rightarrow \frac{z\text{Re}(z)}{|z|} is continuous for any z0z \neq 0.

    By 11^。, 22^。, limz0zRe(z)z=0=f(0)\lim_{z \to 0} \frac{z\text{Re}(z)}{|z|}=0=f(0), f(z)f(z) is continuous on C\mathbb{C}.

  1. (a) limz0z2z2=lim(x,y)(0,0)along y=xx2y2+i2xyx2+y2=limx0x2x2+i2xxx2+x2=limx02x2i2x2=i\lim_{z \to 0} \frac{z^2}{|z|^2}=\lim_{(x,y) \to (0,0) \atop \text{along}\space y=x } \frac{x^2-y^2+i2xy}{x^2+y^2}=\lim_{x \to 0} \frac{x^2-x^2+i2x\cdot x}{x^2+x^2}=\lim_{x \to 0} \frac{2x^2i}{2x^2}=i

    (b) limz0z2z2=lim(x,y)(0,0)along y=2xx2y2+i2xyx2+y2=limx0x2(2x)2+i2x(2x)x2+(2x)2\lim_{z \to 0} \frac{z^2}{|z|^2}=\lim_{(x,y) \to (0,0) \atop \text{along}\space y=2x } \frac{x^2-y^2+i2xy}{x^2+y^2}=\lim_{x \to 0} \frac{x^2-(2x)^2+i2x\cdot (2x)}{x^2+(2x)^2}

    =limx03x2+4x2i5x2=3+4i5=15(3+4i)=\lim_{x \to 0} \frac{-3x^2+4x^2i}{5x^2}=\frac{-3+4i}{5}=\frac{1}{5}(-3+4i)

    (c) limz0z2z2=lim(x,y)(0,0)along y=x2x2y2+i2xyx2+y2=limx0x2(x2)2+i2xx2x2+(x2)2\lim_{z \to 0} \frac{z^2}{|z|^2}=\lim_{(x,y) \to (0,0) \atop \text{along}\space y=x^2 } \frac{x^2-y^2+i2xy}{x^2+y^2}=\lim_{x \to 0} \frac{x^2-(x^2)^2+i2x\cdot x^2}{x^2+(x^2)^2}

    =limx0x2x4+2x3ix2+x4=limx01x2+2xi1+x2=1=\lim_{x \to 0} \frac{x^2-x^4+2x^3i}{x^2+x^4}=\lim_{x \to 0}\frac{1-x^2+2xi}{1+x^2}=1

    (d) No! By (a)(b)(c).

10. π<Arg zπ\because -\pi<\text{Arg}\space z \leq \pi

11^。 θ=Arg zπ\theta=\text{Arg}\space z \leq \pi, limz4Arg z=π\lim_{z \to -4} \text{Arg}\space z=\pi

2 2^。 π<θArg z-\pi <\theta \leq \text{Arg}\space z, limz4Arg z=π\lim_{z \to -4} \text{Arg}\space z=-\pi

By 11^。, 22^。, limz4Arg z\lim_{z \to -4} \text{Arg}\space z doesn’t exist.

  1. f(z)={Re(z)z,z01,z=0f(z)=\begin{cases} \frac{\text{Re}(z)}{|z|}, z \neq 0 \\ 1, z=0 \end{cases}

    11^。 limz0Re(z)z=lim(x,y)(0,0)along y=xxx2+y2=limx0xx2+x2=12\lim_{z \to 0} \frac{\text{Re}(z)}{|z|}=\lim_{(x,y) \to (0,0) \atop \text{along}\space y=x } \frac{x}{\sqrt{x^2+y^2}}=\lim_{x \to 0} \frac{x}{\sqrt{x^2+x^2}}=\frac{1}{\sqrt{2}}

    2 2^。 limz0Re(z)z=lim(x,y)(0,0)along y=2xxx2+y2=limx0xx2+(2x)2=15\lim_{z \to 0} \frac{\text{Re}(z)}{|z|}=\lim_{(x,y) \to (0,0) \atop \text{along}\space y=2x } \frac{x}{\sqrt{x^2+y^2}}=\lim_{x \to 0} \frac{x}{\sqrt{x^2+(2x)^2}}=\frac{1}{\sqrt{5}}

    By 11^。, 22^。, limz0Re(z)z2\lim_{z \to 0} \frac{\text{Re}(z)}{|z|^2} doesn’t exist, f(z)f(z) is not continuous on z=0z=0.