- (c) f(z)=f(x+iy)=f(1+i)=1+1+i(1−1)=2.
- (b) f(1+i3)=f(2ei3π)=(2ei3π)21−5(2ei3π)7+9(2ei3π)4
=−2097544−i3923
- (b) z=x+iy
z=x−iy
f(z)=z2+(2−3i)z
=(x−iy)2+(2−3i)(x+iy)
=x2−i2xy−y2+2x+i2y−i3x+3y
=(x2−y2+2x+3y)+i(−2xy+2y−3x)
- (a) z=∣z∣eiθ=reiθ
z=∣z∣e−iθ=re−iθ
f(z)=z5+z5
=(reiθ)5+(re−iθ)5
=r5ei5θ+r5e−i5θ
=r5[cos(5θ)+isin(5θ)+cos(−5θ)+isin(−5θ)]
=2r5cos(5θ)
6. (c) f(1+i3)=21ln(1+3)+itan−113
=21ln4+itan−13
=ln2+i3π
- (a) f(1)=ln1=0
(b) f(−2)=ln2+iπ
(c) f(1+i)=ln12+i4π=21ln2+i4π
(d) f(−3+i)=ln2+i65π
(e) Yes.
If f(z1)=f(z2), then lnr1+iθ1=lnr2+iθ2.
⇒lnr1=lnr2 and iθ1=iθ2
So r1=r2 and θ1=θ2. (ln is 1-1)
i.e. z1=z2.
- (a) Let f(z1)=f(z2)
g(f(z1))=z1
g(f(z2))=z2
⇒z1=z2
∴f is 1-1.
(b) Let b∈B, g(b)∈A⇒f(g(b))=b.
∴f is an onto map.
10. f(z)=(3+4i)z−2+i⇒f−1(w)=3+4iw+2−i=z
(a) ∣z−1∣<1
⇒∣3+4iw+2−i−1∣<1
⇒∣w+2−i−(3+4i)∣<∣3+4i∣=5
⇒∣w−(1+5i)∣<5
(b) x=t,y=1−2t⇒2x+y−1=0
f(x+iy)=(3+4i)(x+iy)−2+i=(3x−4y−2)+i(4x+3y+1)
u=3x−4y−2,v=4x+3y+1⇒{u=11t−6v=−2t+4
⇒2u+11v=32
(c) Im(z)>1
z=3+4iw+2−i⋅3−4i3−4i=251[(3u+4v+2)+i(−4u+3v−11)]
∴25−4u+3v−11>1⇒4u−3v<36.
- (a) z1=2→w1=1+i→w2=1
Let f(z)=Az+B.
{f(2)=2A+B=1+if(−3i)=(−3i)A+B=1⇒{A=131(3+2i)B=131(7+9i)
∴f(z)=131(3+2i)z+131(7+9i)
(b) ∣z∣=1→∣w−3+2i∣=5,f(−i)=3+3i
Let f(z)=Az+B.
{f(0)=A⋅0+B=3−2if(−i)=A⋅(−i)+B=3+3i⇒{A=−5B=3−2i
∴f(z)=−5z+(3−2i)
(c) z1=−4+2i→w1=1,z2=−4+7i→w2=0,z3=1+2i→w3=1+i
Let f(z)=Az+B.
⎩⎨⎧f(−4+2i)=A⋅(−4+2i)+B=1f(−4+7i)=A⋅(−4+7i)+B=0f(1+2i)=A⋅(1+2i)+B=1+i
⇒A=5i,B=51(7+4i)
∴f(z)=5iz+51(7+4i)