2.1 參考解答

  1. (c) f(z)=f(x+iy)=f(1+i)=1+1+i(11)=2f(z)=f(x+iy)=f(1+i)=1+1+i(1-1)=2.
  1. (b) f(1+i3)=f(2eiπ3)=(2eiπ3)215(2eiπ3)7+9(2eiπ3)4f(1+i\sqrt{3})=f(2e^{i\frac{\pi}{3}})=(2e^{i\frac{\pi}{3}})^{21}-5(2e^{i\frac{\pi}{3}})^7+9(2e^{i\frac{\pi}{3}})^4

    =2097544i3923=-2097544-i392\sqrt{3}

  1. (b) z=x+iyz=x+iy

    z=xiy\overline{z}=x-iy

    f(z)=z2+(23i)zf(z)=\overline{z}^2+(2-3i)z

    =(xiy)2+(23i)(x+iy)=(x-iy)^2+(2-3i)(x+iy)

    =x2i2xyy2+2x+i2yi3x+3y=x^2-i2xy-y^2+2x+i2y-i3x+3y

    =(x2y2+2x+3y)+i(2xy+2y3x)=(x^2-y^2+2x+3y)+i(-2xy+2y-3x)

  1. (a) z=zeiθ=reiθz=|z|e^{i\theta}=re^{i\theta}

z=zeiθ=reiθ\overline{z}=|z|e^{-i\theta}=re^{-i\theta}

f(z)=z5+z5f(z)=z^5+\overline{z}^5

=(reiθ)5+(reiθ)5=(re^{i\theta})^5+(re^{-i\theta})^5

=r5ei5θ+r5ei5θ=r^5e^{i5\theta}+r^5e^{-i5\theta}

=r5[cos(5θ)+isin(5θ)+cos(5θ)+isin(5θ)]=r^5[\cos{(5\theta)}+i\sin{(5\theta)}+\cos{(-5\theta)}+i\sin{(-5\theta)}]

=2r5cos(5θ)=2r^5\cos{(5\theta)}

6. (c) f(1+i3)=12ln(1+3)+itan131f(1+i\sqrt{3})=\frac{1}{2}\ln{(1+3)}+i\tan^{-1}{\frac{\sqrt{3}}{1}}

=12ln4+itan13=\frac{1}{2}\ln{4}+i\tan^{-1}{\sqrt{3}}

=ln2+iπ3=\ln{2}+i\frac{\pi}{3}

  1. (a) f(1)=ln1=0f(1)=\ln{1}=0

    (b) f(2)=ln2+iπf(-2)=\ln{2}+i\pi

    (c) f(1+i)=ln12+iπ4=12ln2+iπ4f(1+i)=\ln{1\sqrt{2}}+i\frac{\pi}{4}=\frac{1}{2}\ln{2}+i\frac{\pi}{4}

    (d) f(3+i)=ln2+i56πf(-\sqrt{3}+i)=\ln{2}+i\frac{5}{6}\pi

    (e) Yes.

    If f(z1)=f(z2)f(z_1)=f(z_2), then lnr1+iθ1=lnr2+iθ2\ln{r_1}+i\theta_1=\ln{r_2}+i\theta_2.

    lnr1=lnr2\Rightarrow \ln{r_1}=\ln{r_2} and iθ1=iθ2i\theta_1=i\theta_2

    So r1=r2r_1=r_2 and θ1=θ2\theta_1=\theta_2. (ln\ln is 1-1)

    i.e. z1=z2z_1=z_2.

  1. (a) Let f(z1)=f(z2)f(z_1)=f(z_2)

    g(f(z1))=z1g(f(z_1))=z_1

    g(f(z2))=z2g(f(z_2))=z_2

    z1=z2\Rightarrow z_1=z_2

    f\therefore f is 1-1.

    (b) Let bBb\in B, g(b)Af(g(b))=bg(b)\in A \Rightarrow f(g(b))=b.

    f\therefore f is an onto map.

10. f(z)=(3+4i)z2+if1(w)=w+2i3+4i=zf(z)=(3+4i)z-2+i \Rightarrow f^{-1}(w)=\frac{w+2-i}{3+4i}=z

(a) z1<1|z-1|<1

w+2i3+4i1<1\Rightarrow |\frac{w+2-i}{3+4i}-1|<1

w+2i(3+4i)<3+4i=5\Rightarrow |w+2-i-(3+4i)|<|3+4i|=5

w(1+5i)<5\Rightarrow |w-(1+5i)|<5

(b) x=t,y=12t2x+y1=0x=t, y=1-2t \Rightarrow 2x+y-1=0

f(x+iy)=(3+4i)(x+iy)2+i=(3x4y2)+i(4x+3y+1)f(x+iy)=(3+4i)(x+iy)-2+i=(3x-4y-2)+i(4x+3y+1)

u=3x4y2,v=4x+3y+1{u=11t6v=2t+4u=3x-4y-2, v=4x+3y+1 \Rightarrow \begin{cases} u=11t-6 \\ v=-2t+4 \end{cases}

2u+11v=32\Rightarrow 2u+11v=32

(c) Im(z)>1\text{Im}(z)>1

z=w+2i3+4i34i34i=125[(3u+4v+2)+i(4u+3v11)]z=\frac{w+2-i}{3+4i} \cdot \frac{3-4i}{3-4i}=\frac{1}{25}[(3u+4v+2)+i(-4u+3v-11)]

4u+3v1125>14u3v<36\therefore \frac{-4u+3v-11}{25}>1 \Rightarrow 4u-3v<36.

  1. (a) z1=2w1=1+iw2=1z_1=2 \rightarrow w_1=1+i \rightarrow w_2=1

    Let f(z)=Az+Bf(z)=Az+B.

    {f(2)=2A+B=1+if(3i)=(3i)A+B=1{A=113(3+2i)B=113(7+9i)\begin{cases} f(2)=2A+B=1+i \\ f(-3i)=(-3i)A+B=1 \end{cases} \Rightarrow \begin{cases} A=\frac{1}{13}(3+2i) \\ B=\frac{1}{13}(7+9i) \end{cases}

    f(z)=113(3+2i)z+113(7+9i)\therefore f(z)=\frac{1}{13}(3+2i)z+\frac{1}{13}(7+9i)

    (b) z=1w3+2i=5,f(i)=3+3i|z|=1 \rightarrow |w-3+2i|=5, f(-i)=3+3i

    Let f(z)=Az+Bf(z)=Az+B.

    {f(0)=A0+B=32if(i)=A(i)+B=3+3i{A=5B=32i\begin{cases} f(0)=A \cdot 0+B=3-2i \\ f(-i)=A \cdot (-i)+B=3+3i \end{cases} \Rightarrow \begin{cases} A=-5 \\ B=3-2i \end{cases}

    f(z)=5z+(32i)\therefore f(z)=-5z+(3-2i)

    (c) z1=4+2iw1=1,z2=4+7iw2=0,z3=1+2iw3=1+iz_1=-4+2i \rightarrow w_1=1, z_2=-4+7i \rightarrow w_2=0, z_3=1+2i \rightarrow w_3=1+i

    Let f(z)=Az+Bf(z)=Az+B.

    {f(4+2i)=A(4+2i)+B=1f(4+7i)=A(4+7i)+B=0f(1+2i)=A(1+2i)+B=1+i\begin{cases} f(-4+2i)=A \cdot (-4+2i)+B=1 \\ f(-4+7i)=A \cdot (-4+7i)+B=0 \\ f(1+2i)=A \cdot (1+2i)+B=1+i \end{cases}

    A=i5,B=15(7+4i)\Rightarrow A=\frac{i}{5}, B=\frac{1}{5}(7+4i)

    f(z)=i5z+15(7+4i)\therefore f(z)=\frac{i}{5}z+\frac{1}{5}(7+4i)