1.5 參考解答(1) If z≠0z \neq 0z=0, then zn+(z‾)n=0z^n+(\overline{z})^n=0zn+(z)n=0 is real (trivially).(2) If z=reiθz =re^{i\theta}z=reiθ, z≠0z \neq 0z=0, then zn=rneinθz^n=r^ne^{in\theta}zn=rneinθ, z‾n=rnei(−nθ)\overline{z}^n=r^ne^{i(-n\theta)}zn=rnei(−nθ) And zn+(z‾)n=rneinθ+rnei(−nθ)z^n+(\overline{z})^n=r^ne^{in\theta}+r^ne^{i(-n\theta)}zn+(z)n=rneinθ+rnei(−nθ) =rn[(cos(nθ)+isin(nθ))+(cos(−nθ)+isin(−nθ))]=r^n[(\cos{(n\theta)}+i\sin{(n\theta)})+(\cos{(-n\theta)}+i\sin{(-n\theta}))]=rn[(cos(nθ)+isin(nθ))+(cos(−nθ)+isin(−nθ))] =rn[cos(nθ)+isin(nθ)+cos(nθ)−isin(nθ)]=r^n[\cos{(n\theta)}+i\sin{(n\theta)}+\cos{(n\theta)}-i\sin{(n\theta})]=rn[cos(nθ)+isin(nθ)+cos(nθ)−isin(nθ)] =2rncos(nθ)∈R=2r^n \cos{(n\theta)} \in \mathbb{R}=2rncos(nθ)∈R