1.5 參考解答

  1. (1) If z0z \neq 0, then zn+(z)n=0z^n+(\overline{z})^n=0 is real (trivially).

    (2) If z=reiθz =re^{i\theta}, z0z \neq 0, then zn=rneinθz^n=r^ne^{in\theta}, zn=rnei(nθ)\overline{z}^n=r^ne^{i(-n\theta)}

    And zn+(z)n=rneinθ+rnei(nθ)z^n+(\overline{z})^n=r^ne^{in\theta}+r^ne^{i(-n\theta)}

    =rn[(cos(nθ)+isin(nθ))+(cos(nθ)+isin(nθ))]=r^n[(\cos{(n\theta)}+i\sin{(n\theta)})+(\cos{(-n\theta)}+i\sin{(-n\theta}))]

    =rn[cos(nθ)+isin(nθ)+cos(nθ)isin(nθ)]=r^n[\cos{(n\theta)}+i\sin{(n\theta)}+\cos{(n\theta)}-i\sin{(n\theta})]

    =2rncos(nθ)R=2r^n \cos{(n\theta)} \in \mathbb{R}