- (a) −4=4eiπ
(b) 6−6i=62ei(−4π)
(c) −7i=7ei(−2π)
(d) −23−2i=4ei(−65π)
(e) (1−i)21=(2ei(−4π))21=2ei(−2π)1=21ei2π
(f) i+36=2ei6π6ei⋅0=3ei(−6π)
(g) 3+4i=5eiθ,θ=tan−1 (34)
(h) (5+5i)3=(52ei4π)3=2502ei43π
5. (a) ei2π=cos2π+isin2π=i
(b) 4e−i2π=4(cos(−2π)+isin(−2π))=4(cos2π−isin2π)=4(−i)=−4i
(c) 8ei37π=8(cos37π+isin37π)=8(cos3π+isin3π)=8(21+i23)=4+i43
(d) −2ei65π=−2(cos65π+isin65π)=−2(−23+i21)=3−i
(e) 2ie−i43π=2i(cos(−43π)+isin(−43π))=2i(cos43π−isin43π)
=2i(−22−i22)=2−i2
(f) 6ei32πeiπ=6ei35π=6(cos35π+isin35π)=6(cos(−3π)+isin(−3π))
=6(cos3π−isin3π)=6(21−i23)=3−i33
(g) e2eiπ=e2(cosπ+isinπ)=e2(−1)=−e2
(h) ei4πe−iπ=e−i43π=cos(−43π)+isin(−43π)=cos43π−isin43π=−22−i22
- “⇒” If arg z1=arg z2 for z1=z2,
then θ∈argz1, where z1=∣z1∣eiθ
θ∈argz2, where z2=∣z2∣eiθ
z2=∣z2∣eiθ=∣z2∣⋅∣z1∣∣z1∣eiθ=∣z1z2∣⋅∣z1∣eiθ=c⋅z1, where c=∣z1z2∣>0.
“⇐” If z2=cz1, c>0, then we have
∣z2∣=∣cz1∣=c∣z1∣, ∣z1∣=c1∣z2∣
1。 If θ∈argz1, where z1=∣z1∣eiθ,
then z2=cz1=c∣z1∣eiθ=∣z2∣eiθ,
so θ∈argz2, then argz1⊆argz2.
2。 If θ∈argz2, where z2=∣z2∣eiθ,
then z1=c1z2=c1∣z2∣eiθ=∣z1∣eiθ,
so θ∈argz1, then argz2⊆argz1.
- counterexample:
Remark: arg(z1)+arg(z2)=arg(z1z2)
Arg (z1)+Arg (z2)=Arg (z1z2)
z1=−1+i3, Arg (z1)=32π
z1=−3+i, Arg (z2)=65π
z1⋅z2=2ei32π⋅2ei65π=4ei23π
And Arg (z1z2)=−2π
Thus, Arg (z1z2)=Arg (z1)+Arg (z2)