1.3 參考解答

  1. (a) Let z=x+iyz=x+iy

    (x+1)+i(y2)=2|(x+1)+i(y-2)|=2

    (x+1)2+(y2)2=22\Rightarrow (x+1)^2+(y-2)^2=2^2

    This is a circle of radius 22, centered at (1+2i)=(1,2)(-1+2i)=(-1,2).

    (b) Let z=x+iyz=x+iy, then z+1=(x+1)+iyz+1=(x+1)+iy

    Re(z+1)=x+1\text{Re}(z+1)=x+1

    x+1=0z=1x+1=0 \Rightarrow z=-1

    It’s a vertical line pass through (1,0)(-1,0).

    (c) Let z=x+iyz=x+iy

    z+2i=x+i(y+2)1|z+2i|=|x+i(y+2)| \leq 1

    x2+(y+2)21\Rightarrow x^2+(y+2)^2 \leq 1

    This is the closed disk of radius 11, centered at 2i=(0,2)-2i=(0,-2).

    (d) Let z=x+iyz=x+iy, then z2i=x+i(y2)z-2i=x+i(y-2)

    Im(z2i)=y2<6\text{Im}(z-2i)=y-2<6

    y>8\therefore y>8

  1. Let z=x+iyz=x+iy, z=x2+y2|z|=\sqrt{x^2+y^2}, Re(z)=x|\text{Re}(z)|=|x|, Im(z)=y|\text{Im}(z)|=|y|.

    Show that 2x2+y2x+y\sqrt{2}\sqrt{x^2+y^2} \geq |x|+|y|.

    (2x2+y2)2(x+y)2(\sqrt{2}\sqrt{x^2+y^2})^2-( |x|+|y|)^2

    =2(x2+y2)x22xyy2=2(x^2+y^2)-x^2-2|x||y|-y^2

    =x22xy+y2=x^2-2|x||y|+y^2

    =x22xy+y2=|x|^2-2|x||y|+|y|^2

    =(xy)20=(|x|-|y|)^2 \geq 0

    i.e. (2x2+y2)2(x+y)2(\sqrt{2}\sqrt{x^2+y^2})^2 \geq ( |x|+|y|)^2

    and 2x2+y20\because \sqrt{2}\sqrt{x^2+y^2} \geq 0, x+y0|x|+|y| \geq 0

    Thus, 2x2+y2x+y\sqrt{2}\sqrt{x^2+y^2} \geq |x|+|y|.

    2zRe(z)+Im(z)\therefore \sqrt{2}|z| \geq |\text{Re}(z)|+|\text{Im}(z)|.

17. Case 1:

z=1z=1|z|=1 \Rightarrow |\overline{z}|=1

zw=zwz=zzwz=z2zw=1zw|z-w|=|z-w||\overline{z}|=|z\overline{z}-w\overline{z}|=||z|^2-\overline{z}w|=|1-\overline{z}w|.

Case 2:

w=1w=1|w|=1 \Rightarrow |\overline{w}|=1

zw=zw=wz=ww2z=wwwz|z-w|=|\overline{z}-\overline{w}|=|\overline{w}-\overline{z}|=|\overline{w}-|\overline{w}|^2\overline{z}|=|\overline{w}-w\cdot\overline{w}\cdot\overline{z}|

=w(1wz)=w1wz=1zw=|\overline{w}(1-w\overline{z})|=|\overline{w}||1-w\overline{z}|=|1-\overline{z}w|.