(a) Let z=x+iy ∣(x+1)+i(y−2)∣=2
⇒(x+1)2+(y−2)2=22
This is a circle of radius 2, centered at (−1+2i)=(−1,2).
(b) Let z=x+iy, then z+1=(x+1)+iy
Re(z+1)=x+1
x+1=0⇒z=−1
It’s a vertical line pass through (−1,0).
(c) Let z=x+iy
∣z+2i∣=∣x+i(y+2)∣≤1
⇒x2+(y+2)2≤1
This is the closed disk of radius 1, centered at −2i=(0,−2).
(d) Let z=x+iy, then z−2i=x+i(y−2)
Im(z−2i)=y−2<6
∴y>8