- (a) Since z1 is a root of polynomial P, we have P(z1)=0.
And P(z1)=z1n+az−1z1n−1+⋯+a1z1+a0
=z1n+an−1z1n−1+⋯+a1z1+a0
=z1n+an−1z1n−1+⋯+a1z1+a0
=z1n+an−1z1n−1+⋯+a1z1+a0=P(z1)
Then we have P(z1)=0 and P(z1)=0.
i.e. P(z1)=0.
Thus, z1 is a root of polynomial P.
- (b) False
counterexa奧mple:
Let z1=1+i, z2=1−i
z1⋅z2=(1+i)(1−i)=1−(−1)=2
Re(z1z2)=2
Re(z1)=1
Re(z2)=1
Re(z1)Re(z2)=1
∴Re(z1z2)=2=Re(z1)Re(z2)
- Let z1=(x1,y1), z2=(x2,y2), z3=(x3,y3)
z1(z2+z3)=(x1,y1)[(x2,y2)+(x3,y3)]
=(x1,y1)(x2+x3,y2+y3)
=(x1(x2+x3)−y1(y2+y3),x1(y2+y3)+y1(x2+x3))
=(x1x2+x1x3−y1y2−y1y3,x1y2+x1y3+y1x2+y1x3)
=(x1x2−y1y2,x1y2+y1x2)+(x1x3−y1y3,x1y3+y1x3)
=(x1,y1)(x2,y2)+(x1,y1)(x3,y3)
=z1z2+z1z3